
TYPO3 Flow Coding Guidelines on one page

<?php
namespace Acme\TestPackage;

/* *
 * This script belongs to the TYPO3 Flow package "Acme.TestPackage". *
 * *
 * It is free software; you can redistribute it and/or modify it under *
 * the terms of the GNU General Public License, either version 3 of the *
 * License, or (at your option) any later version. *
 * *
 * The TYPO3 project - inspiring people to share! *
 * */

use Acme\TestPackage\Service\FooGenerator;
use TYPO3\Flow\Annotations as Flow;

/**
 * Here goes the description of the class. It should explain what the main
 * purpose of this class is...
 *
 * @Flow\Scope(”singleton”)
 */
class UniverseAnalyzer extends BaseClass implements SomeInterface {

/**
 * Some injected dependency
 *
 * @Flow\Inject
 * @var FooGenerator
 */
protected $someDependency = NULL;

/**
 * Shows if you are addicted to TYPO3 Flow
 *
 * @var boolean
 */
static protected $addictedToFlow = TRUE;

/**
 * Shows if you are a fan of TYPO3 Flow
 *
 * @var boolean
 */
protected $fanOfFlow;

/**
 * A great method which shows how to indent control structures.
 *
 * @param MyClass $object An instance of MyClass
 * @param array $someArray Some array
 * @return void
 * @throws \Exception
 */
public function analyzeUniverse(MyClass $object, array $someArray = array()) {

$subObjects = $object->getSubObjects();
foreach ($subObjects as $subObject){

/** @var $subObject MySubClass */
$subObject->doSomethingCool();

}
if (isset($someArray['question'])

&& $this->answerToEverything === 42
|| count($someArray) > 3) {

$this->fanOfTYPO3Flow = TRUE;
} else {

throw new \Exception('We cannot tolerate that.', 1223391710);
}

}

/**
 * This is a setter for the fanOfFlow property.
 *
 * @param boolean $isFan Pass TRUE to mark a fan, FALSE for a Zend follower
 * @return mixed
 */
public function setFanOfFlow($isFan) {

$this->fanOfFlow = $isFan;
}

/**
 * As simple as it gets – a boolean getter.
 *
 * @return boolean Whether a foo was detected (TRUE) or not (FALSE)
 * @api
 */
static public function isAddictedToFlow() {

return self::$addictedToFlow;
}

}
?>

Also check out the latest documentation: http://docs.typo3.org/flow/TYPO3FlowDocumentation/TheDefinitiveGuide/PartV/CodingGuideLines/Index.html

Description of the class. Make it as
long as needed, feel free to explain
how to use it.

Namespace starts with vendor name
followed by package key (name) and
subparts as needed

UpperCamelCase class name. Class
names should be nouns.
In other packages, import
\Acme\TestPackage\UniverseAnalyzer
and refer to it as UniverseAnalyer.

Opening brace on same line with
opening token. One space before.

Use @var tag. Optional description
goes in the first comment line
followed by a blank comment line.

Indent with tabs.

Multiline conditions:
Indent them and add a extra indent
to following code. Put the boolean
operators at beginning of line.

Write what went wrong, give helpful
details and give a hint for a possible
solution.

UNIX timestamp at time of writing
the throw clause.

Description of the method. Make it
as long as needed.

Use type hinting

Methods returning boolean values
should start with “has” or “is”. Other
getters should start with “get“.

Setter methods should start with
“set”.

Method names should be verbs.

@return tag with type, even if it is
“void”. Only __construct() has no
return tag.

static and abstract keywords before
the visibility modifier

@api tag defines public API

One use statement per line.
One use statement per namespace.
Order statements alphabetically.
Don't import namespaces unless you
use them.

No empty line between DocComment
and class, member var or method.

Prefer relative namespaces, unless
Fully Qualified Namespace is more
readable

Param tag: type, name, description.

Only use inline @var annotations
when type can't be derived (like in
an array of objects) to increase
readability and trigger IDE auto-
completion.

List @Flow* before other tags:
@var, @param, @return, @throws,
@api, @since, @deprecated

Capture the joy of coding as you
create excellent web solutions.
Enjoy coding. Enjoy Flow.

http://docs.typo3.org/flow/TYPO3FlowDocumentation/TheDefinitiveGuide/PartV/CodingGuideLines/Index.html

	TYPO3 Flow Coding Guidelines on one page

