

THE

RECORD MANAGER

Version 2.4

User’s Guide

 • for Visual Basic developers •

Copyright © 2002

ADVANTAGE SYSTEMS

All Rights Reserved

 1

INTRODUCTION

Tsunami is a key-indexed record manager written for use with most 32-bit Windows compilers
and languages. Visual Basic developers: add the following module to your projects…

TRM_VB.BAS

… and you’re ready to call any of the 38 functions in the Tsunami TRM.DLL to create, build
and manage your database. Tsunami has been tested on Windows 95, 98, 98SE, ME, NT 4.0,
2000 and XP. The Tsunami License Agreement is located in Appendix “A”. This document
assumes the reader has a working knowledge of record managers and database management
in general.

OVERVIEW

File Structure

A Tsunami file is a “page structured” file. You define the page size used within a Tsunami file
when you create it. Pages within a Tsunami file are used for storing file header information,
records, index keys and internal pointers. As a programmer, it isn’t necessary for you to know
how or where Tsunami stores these items, but you will need a little information to select an
appropriate page size for each file you create.

Page sizes can be anywhere from 1K to 8K, in increments of 1K. Internally, Tsunami uses
long integer variables for it’s page pointers. A long integer variable can hold a value of up to
2,147,483,647 so theoretically, a Tsunami file could grow in size to a maximum of 16 terabytes
when using an 8K page size. That’s enough to fill over 200 80-Gigabyte hard drives. Tsunami
also uses long integer variables internally as unique record IDs, which means you can store
over 2 billion records in each file.

When specifying the page size for a new Tsunami file, your decision could affect storage
efficiency and/or I/O speed. Using a page size of 1K or 2K will usually result in the fastest
read/write operations when the records intended for that file are normally small enough to fit on
a page that size.

For files that will (or could) contain records larger than the page size you defined, read/write
operations won’t be quite as fast if multiple pages must be accessed to retrieve the whole
record. Since Tsunami allows variable length records, you may need to estimate the averag e
anticipated record length and base your page size decision on that figure. For example, if your
Tsunami file is intended to hold customer records that are all exactly 200 bytes each in size,
use a 1K or 2K page size. However, if your customer records could be anywhere from 200
bytes to over 200,000 bytes long, then using an 8K page size would probably be appropriate.

 2

There’s no real maximum record size for a Tsunami file. When defining the page size, simply
remember… select a small page size to increase access speed unless the records are going
to be unusually large.

Indexes / Keys

Tsunami creates and maintains the indexes in your files as you insert, update and delete
records. You may define 32 indexes for a file defined with a 1K page size, 64 indexes for a file
using a 2K page size, 96 indexes when using a 3K page size and 128 indexes for files with
page sizes of 4K or more. To be more accurate… those are the number of key “segments”
you can define per file. Keys in a Tsunami file may be multi-segmented. This means you
could define 1 key with as many as 128 segments, 128 keys with 1 segment each or anything
in between (subject to page size limits on key segments). Keys are all stored in the same file
with the records, no matter how many indexes you define. In this document, indexes are also
referred to as key paths.

Keys may be anywhere from 1 byte to 255 bytes long. This key length maximum includes the
total length of all segments defined for each key. Tsunami requires you to define at least one
index for each file you create. If you want, all indexes may allow duplicates. A unique key
index is not required in a Tsunami file.

When an index is defined to allow duplicates, Tsunami sorts all duplicate keys within each
index, always storing the duplicates in “insert order”. That way, any Tsunami function that
performs a search on keys that have duplicates will always return the first match in the
duplicate chain, representing the first record added with that key value.

When you define the indexes for a Tsunami file that you’re about to create, the key segments
may be located anywhere in the physical record, as long as they are within the first 65,535
bytes of the record (if the records are that large). Records can certainly be larger than 65,535
bytes, but key segment positions can’t reside beyond the 65,535th byte.

Tsunami also allows you to define any key index as being either case-sensitive or case-
insensitive. This allows your users to enter information in upper case, lower case or any
combination and still locate records just as easily as they could in a “forced case” data entry
approach.

Functions

The Tsunami Record Manager offers 38 functions to manage your data. Detailed explanations
are provided in the TSUNAMI OPERATIONS section, starting on page 7.

 trm_Accelerate trm_GetByKeyPos trm_GetLess trm_SetKeyPath
 trm_Close trm_GetDirect trm_GetNext trm_StepFirst
 trm_CloseAll trm_GetEqual trm_GetPosition trm_StepLast
 trm_Count trm_GetEqualOrGreater trm_GetPrev trm_StepNext
 trm_Create trm_GetEqualOrLess trm_Insert trm_StepPrev
 trm_CurrKeyPos trm_GetFileDef trm_Integrity trm_TimeOut
 trm_Delete trm_GetFileVer trm_Open trm_Update
 trm_FileIsOpen trm_GetFirst trm_Rebuild trm_Version
 trm_FileSize trm_GetGreater trm_Recover
 trm_Flush trm_GetLast trm_Result

 3

Current Record Position

Tsunami maintains two forms of positioning information for each open file… logical positioning
and physical positioning. Logical positioning refers to your position in a file with regard to the
current key path and consists of three elements…

 • A POINTER TO THE “CURRENT RECORD” IN THE CURRENT KEY PATH
 • A POINTER TO THE “PREVIOUS RECORD” (IF ANY) IN THE CURRENT KEY PATH
 • A POINTER TO THE “NEXT RECORD” (IF ANY) IN THE CURRENT KEY PATH

Physical positioning consists only of…

 • A POINTER TO THE PHYSICAL LOCATION OF THE “CURRENT RECORD”

Any successful trm_Insert, trm_Get or trm_Update function will establish logical positioning in
the current key path. Logical positioning is required for certain Tsunami function calls, such as
trm_Update or trm_Delete. Without a logical current record position, those functions will return
a result code indicating an error condition.

Logical positioning is also required by both the trm_GetNext and the trm_GetPrev functions
that are used to traverse your records via the current key path. If you have established logical
positioning, that positioning information will remain unchanged if you call a Tsunami function
that fails (such as trm_GetNext when you’ve already reached the end of the current key path).

After logical positioning has been established, you can switch key paths by using the
trm_SetKeyPath function, which will maintain position on the current record, but in the key path
you specified in your function call.

The trm_GetPosition function returns a 12-byte pointer to the current record that can be used
at any time later to retrieve that record and re-establish it as the current record. This function
comes in handy when you need to move to a different location in a file temporarily and then
come back to the exact file position by using the trm_GetDirect function. You can store as
many 12-byte record pointers as you like, so you might even use this function to store pointers
in a string array as you select records from your file for processing or inclusion in a list or
report.

The affect each function has on logical and physical positioning is outlined in the TSUNAMI
OPERATIONS section, starting on page 7.

Data Compression

Whenever you create a Tsunami file, you must decide whether or not to allow data
compression. For most situations, data compression will increase storage efficiency and
access speeds (smaller records produce smaller files, resulting in faster access). The records
in Tsunami files are compressed using RLE (Run Length Encoding) that compresses any
contiguous run of duplicate characters (anywhere from 4 to 255 duplicates) into a 3-byte
“compression block”.

 4

Tsunami’s RLE algorithm uses the ASCII “zero” internally as a block marker to signify the start
of each 3-byte compression block. It should be noted that any contiguous run of ASCII zeros
will be compressed into a 3-byte compression block, just like any other ASCII character.
However, all runs of ASCII zeros (even a “run” of 1) must be enclosed in a compression block.
In records with a large number of isolated ASCII zeros, this may cause the compression effort
to suffer. If it happens often enough, the algorithm will abandon the compression effort (if the
result would end up being larger than the original record). This won’t hurt anything, but in a
case where you know in advance that your records will contain isolated ASCII zeros in large
numbers (JPEG images, encrypted data, etc), you may wish to turn record compression off for
that file. Even though the RLE algorithm is very fast, there’s no reason to use it if the records
aren’t going to yield much (or any) compression.

You also have the option of compressing keys in Tsunami indexes (on an index-by-index
basis) which compacts any contiguous run of blank spaces within a key into a single blank
space, and strips off any leading or trailing blank spaces. Compressing keys will result in
smaller files and faster access, but there may be times when certain keys should not be
compressed. For example, a key that contains right justified text (like an account number), will
not sort properly if it’s leading spaces are removed during key compression.

Using the compression options could also have an impact on your page size selection. If you
know the approximate average size of the records to be stored, and you know in advance that
approximately 1/3 of each record will normally consist of blank spaces (or some other
repeating character), then you could safely estimate the record size at 2/3 of the approximate
average size prior to compression. This should assist you in selecting the best page size for
your application.

Free Space Utilization

When you use the trm_Delete function to remove a record from a Tsunami file, the record is
physically deleted from the page(s) it occupied. This means that there will be a “hole” in your
data file left by the record that was removed. Tsunami maintains an internal list of free space
created by record deletions, using that space again for subsequent record insertions. This
eliminates the need for periodic “packing” or reorganizing of your data files to clean up after
numerous records are deleted over time. Rebuilding a Tsunami file using the trm_Rebuild
function (see page 63) is only necessary when…

• you’d like to compact a file from which a large number of records have been deleted and you
 don’t expect any future record insertions to re-occupy the vacated space, or…

• you need to change a file’s definition or it’s key segment definitions.

Limitations

Other than limiting files to no more than 2,147,483,647 records, Tsunami only has two real
limitations that you might actually run into, but it’s still important for you to note them…

1.) Tsunami files can have no more than 32 to 128 key segments defined for any one file,
 depending on the defined page size (see page 2).

 5

2.) Tsunami can’t open more than 255 files at a time. This limit may also be affected by the
 number of physical file handles being made available to your application by Windows.

Multi-User

Tsunami allows you to open files in either single-user mode or multi-user mode. In single-user
mode, Tsunami opens a file for exclusive access… no other thread, application or user can
access the file until you close it. In multi-user mode, Tsunami opens the file in full shared
mode, using a passive concurrency model to allow unrestricted access by all users. Files are
only locked during the few milliseconds that it takes for Tsunami to perform the requested
operation(s).

In the rare event of a system hang or crash immediately after a file has been locked, a two
second “time-out” result code (99) is returned to any other user who attempts to access the
locked file. In that rare event, a system-wide reset might be required. This result code could
also be the result of an attempt to open a file that’s already open in single-user, exclusive
mode.

Tsunami’s use of passive concurrency allows more than one user to establish the same record
in a file as their current record. If one user deletes that current record, and another then tries
to update it, the second user will receive the “Lost record position” result code (22). The same
thing applies if the first user updates the record… the second user would need to call
trm_GetPosition followed by trm_GetDirect to reload the updated record. It’s always the
programmer’s job to watch for result code 22 and handle it within the application.

If two users have established the same record in a file as their current record and one of the
users deletes that record, Tsunami will not lose it’s position if the second user invokes the
trm_GetNext or trm_GetPrev function to move forward or backward in the current key path…
the function will succeed. However, if the first user deleted not only the current record, but
also the next and/or previous record, the second user would then receive the “Lost record
position” result code (22).

In multi-user mode, Tsunami writes all changes to it’s files as they are made before unlocking
them, so files will always reflect their current state when other users access them. In single-
user mode, Tsunami’s file header information is not normally updated until you close the file.
This provides a measurable speed improvement, but can also leave a file open to corruption
due to an invalid header page if the computer crashes or hangs before the file is closed. In
that event, you may need to use either the trm_Rebuild or trm_Recover function to salvage the
records in the file.

To help avoid this, you can use the trm_Flush function periodically to force an update of all
header pages and force all cached data to disk. This is done automatically for you after every
operation that alters any file opened in multi-user mode, but sometimes you might find it
necessary to open files in single-user (exclusive) mode and still ensure file integrity.

When accessing a Tsunami file in multiple threads within an application, the file must be
opened in multi-user mode. Each thread must open the file independently to obtain it’s own
file handle. There are no artificial limits on the number of concurrent users or threads that may
access Tsunami files... only the number of files that Tsunami can open at one time (255).

 6

Locking / Unlocking

Tsunami does not include specific “lock” or “unlock” functions for records or files. When a file
is opened in single-user mode, it is obviously locked by Tsunami for exclusive access. When
a file is opened in multi-user mode, Tsunami handles all the necessary file locks to guard
against potential file corruption.

If you need temporary exclusive access to a file that you have opened in multi -user mode, you
can simply open the file again, but in single -user mode. You don’t need to close the file first…
you can have it open in multi-user mode and still open it again in single-user mode (receiving
another file handle). You can then perform the operation(s) that need exclusive access (using
the single-user file handle), close the file (with the single-user file handle) and return directly to
multi-user mode.

The logistics involved in accomplishing this are internal to Tsunami… you don’t need to deal
with it from a programmer’s standpoint.

 7

TSUNAMI OPERATIONS

The following pages will detail each of Tsunami’s 38 function calls, presented in alphabetical
order. For each function, we provide…

� The function name (and it’s operation code number)
� A description of the function’s purpose
� Syntax examples, detailing the parameters required by the function
� Any prerequisites that must be satisfied before the function can be successfully called
� Results that may be expected of both a successful and an unsuccessful call
� Affect on current positioning (if any)

As you will learn in the very next section, Tsunami has more than one interface option. In it’s
string-based option, half of Tsunami’s functions return a numeric result code directly, while the
other half (the trm_Get and trm_Step functions) return a string and must therefore report their
numeric result code through the trm_Result function. All string-based syntax examples for the
trm_Get and trm_Step functions will include the example call to obtain a result code.

Three Interface (API) Options

Tsunami offers three interfaces. Visual Basic developers should only use the string-based
API. The other two “pointer-based” APIs are listed in this guide purely for information.

• String-based API

Tsunami’s original interface is comprised of 38 function calls, most of which have one or more
parameters, many of which are string variables. In this document, that interface will be
referred to as Tsunami’s string-based API. For those string-based calls that return a string
instead of a result code, the result codes are obtained through a subsequent call to
trm_Result. This example shows a typical call using the string-based API…

 Record$ = trm_GetEqual(hFile&, KeyNo&, KeyVal$)
 Result& = trm_Result(hFile&)

In this example, the appropriate file handle must be in the hFile& variable, the key path
number (1-128) must be in the KeyNo& variable and the key value being searched for needs
to be in the KeyVal$ variable.

If successful, Tsunami returns the requested record in the Record$ variable. If unsuccessful,
the Record$ variable will be a null string and a subsequent call to trm_Result returns a result
code explaining why a record was not retrieved.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsunami also offers two optional “single-call” interfaces. In this document, those two
interfaces will be known as the pointer-based APIs, since they pass pointers to strings instead
of passing string variables. The first pointer-based API passes seven long integer parameters
to Tsunami as follows…

 8
 Op& = 5 ‘ trm_GetEqual
 DataPtr& = StrPtr(Record$)
 DataLen& = Len(Record$)
 KeyPtr& = StrPtr(KeyVal$)
 KeyLen& = Len(KeyVal$)
 KeyNo& = 1

 Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)

In this example, the Op& parameter must hold the desired operation code and the hFile&
parameter must hold the Tsunami file handle.

Tsunami also needs to know the memory address of the string variable, buffer or UDT variable
intended to hold the retrieved record. Pass that address in the DataPtr& parameter and pass
the size (length) of that string variable, buffer or UDT variable in the DataLen& parameter.

The KeyPtr& parameter must hold a value representing the memory address of the string
variable or buffer that holds the key value being searched for, and the KeyLen& parameter
must hold a value that represents the length of the key being passed. If you’re using a buffer
to pass the key value and the buffer is larger than the key, be sure to pass the length of the
key itself, not the length of the buffer holding the key. This example also requires a key
number so Tsunami knows which index to search… obviously, that’s passed in the KeyNo&
parameter.

If successful, the result code will be 0, the desired record will be in the string variable, buffer or
UDT pointed to by the DataPtr& parameter and the length of the retrieved record will be
returned in the DataLen& parameter. When unsuccessful, a non-zero result code is returned.
If the result code is 50 (Data buffer too small) nothing is returned in the string variable, buffer
or UDT. However, the DataPtr& and DataLen& parameters will then return the memory
address and length of the complete record so you can retrieve it directly without another
Tsunami call.

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsunami’s second pointer-based API passes a single parameter… a User Defined Type that
has seven long integer elements…

 Dim Tsu As TRMtype

 Tsu.op = 5 ‘ trm_GetEqual
 Tsu.file = hFile&
 Tsu.dataptr = StrPtr(Record$)
 Tsu.datalen = Len(Record$)
 Tsu.keyptr = StrPtr(KeyVal$)
 Tsu.keylen = Len(KeyVal$)
 Tsu.keyno = 1

 Result& = trm_udt(Tsu)

In this example, the Tsu.op element must hold the desired operation code and the Tsu.file
element must hold the Tsunami file handle.

Tsunami also needs to know the memory address of the string variable, buffer or UDT variable
intended to hold the retrieved record. Pass that address in the Tsu.dataptr element and pass
the size (length) of that string variable, buffer or UDT variable in the Tsu.datalen element.

 9

The Tsu.keyptr element must hold a value representing the memory address of the string
variable or buffer that holds the key value being searched for, and the Tsu.keylen element
must hold a value that represents the length of the key being passed. If you’re using a buffer
to pass the key value and the buffer is larger than the key, be sure to pass the length of the
key itself, not the length of the buffer holding the key. This example also requires a key
number so Tsunami knows which index to search… obviously, that’s passed in the Tsu.keyno
element.

If successful, the result code will be 0, the desired record will be in the string variable, buffer or
UDT pointed to by the Tsu.dataptr element and the length of the retrieved record will be
returned in the Tsu.datalen element. When unsuccessful, a non-zero result code is returned.
If the result code is 50 (Data buffer too small) nothing is returned in the string variable, buffer
or UDT. However, the Tsu.dataptr and Tsu.datalen elements will then return the memory
address and length of the complete record so you can retrieve it directly without another
Tsunami call.

The pointer-based APIs were added to facilitate the use of Tsunami with as many other
languages / compilers as possible. Visual Basic is only “directly” compatible with Tsunami’s
string-based API.

Key-Only Searches

Eleven of Tsunami’s trm_Get functions that normally return a record, can also be used for key-
only searches. To designate a key-only search, simply use Tsunami’s KEY_ONLY constant.
In the string-based API, add the KEY_ONLY constant as a bias to the function’s file handle
parameter (see the code example below). In Tsunami’s pointer-based APIs, the KEY_ONLY
constant is simply added to the Op& parameter or to the Tsu.op element, depending on which
pointer-based API you’re using.

In a key-only search, instead of receiving the full record, you will only receive the record’s key
for the designated (or current) key path, along with a 12-byte record pointer which is attached
to the front of the returned key. That record pointer can then be used later in a trm_GetDirect
call to retrieve the full record, if needed. To parse the record pointer from a returned key, use
code similar to the following …

 RetVal$ = trm_GetFirst(hFile& + KEY_ONLY, KeyPath&)

 If Len(RetVal$) Then
 RecPtr$ = Left(RetVal$, 12)
 Key$ = Mid(RetVal$, 13)
 Else
 Result& = trm_Result(hFile&)
 End If

Key-only searches are often used to see if a certain key value exists within a file’s index (using
trm_GetEqual) without incurring the overhead of returning the entire record. This can prove
very useful for files containing extremely large records.

Note: Logical and physical positioning information is still established by Tsunami during key-
only searches, even though records are not retrieved.

 10

trm_Accelerate (32)

trm_Accelerate should be used whenever you want to perform “batch” operations on a
Tsunami file where speed is important. Tsunami will create and maintain an I/O cache for the
designated file’s key pages, greatly improving performance. Programmers must be aware that
many key page updates are cached while the file is in accelerated mode and will only be
written to disk when accelerated mode is turned off. Therefore, this function can only be used
on files that are opened in single-user mode.

Note: You may accelerate up to 16 Tsunami files at any time. Acceleration can be turned on
and off at any time without the need to close and re-open the file. If you neglect to turn off
acceleration before you close a file, Tsunami will write the file’s cache to disk before closing it.

Syntax

• String-based API

Result& = trm_Accelerate(hFile&, CacheSize&)

… where hFile& holds a file handle returned by the trm_Open function

… where CacheSize& holds a value from 1 to 1536, telling Tsunami how many megabytes of
RAM to allow for the designated file’s acceleration cache. Passing a value greater than 1536
is considered the same as passing 1536. This parameter may also hold one of the following
“instruction” values …

 0 = Write cached pages to disk and close the file’s cache (turn acceleration off)
 -1 = Write cached pages to disk but leave the file’s cache open (flush the cache)
 -2 = Close the file’s cache without writing cached pages to disk (after read-only activity)

Passing a positive value (1 to 1536) as the CacheSize& parameter turns caching on for the
designated file. Tsunami will use that value to set the maximum memory allocation for the
cache (1 megabyte to 1,536 megabytes). If the value you pass is greater than 75% of the
physical RAM present on the PC, Tsunami will reduce the requested cache maximum to that
75% level.

Tsunami’s cache is dynamic. Only 2% to 3% of the requested maximum is actually allocated
when acceleration is turned on… the remainder of the requested amount is dynamically
allocated as needed. Therefore, requesting more cache than you might need will not waste
resources.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 32 ‘ trm_Accelerate
KeyNo& = 10 ‘ 10MB cache

Result& = trm(Op&, hFile&, 0, 0, 0, 0, KeyNo&)

 11

trm_Accelerate (32) (continued)

Syntax (continued)

The KeyNo& parameter is used to pass trm_Accelerate instructions to Tsunami. When you
want to turn acceleration on for a given file, put a value of 1 to 1536 in the KeyNo& parameter.
To execute any of the other three trm_Accelerate options, put a 0, -1, or -2 in the KeyNo&
parameter (described on the previous page, under the string-based syntax example).

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 32 ‘ trm_Accelerate
Tsu.file = hFile&
Tsu.keyno = 10 ‘ 10MB cache

Result& = trm_udt(Tsu)

The Tsu.keyno element is used to pass trm_Accelerate instructions to Tsunami. When you
want to turn acceleration on for a given file, put a value of 1 to 1536 in the Tsu.keyno element.
To execute any of the other three trm_Accelerate options, put a 0, -1, or –2 in the Tsu.keyno
element (described on the previous page, under the string-based syntax example).

Prerequisites

The file to be accelerated must have been successfully opened in single-user mode by the
trm_Open function.

Results

If successful… trm_Accelerate will return a result code of 0.

If unsuccessful… trm_Accelerate will return one of these result codes …

 2 I/O error

 3 File not open

 40 Accelerated access denied

 41 Acceleration cache error

Positioning

This function has no affect on positioning information.

 12

trm_Close (1)

The trm_Close function is used to close a specific Tsunami file. Use this function instead of
trm_CloseAll when you need to know if there was an I/O error while closing a certain file.
Although trm_CloseAll will return a result code indicating an I/O error if it encounters any
problems while closing multiple files, it can’t inform you which file(s) generated the I/O error(s)
like trm_Close can.

Syntax

• String-based API

Result& = trm_Close(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 1 ‘ trm_Close

Result& = trm(Op&, hFile&, 0, 0, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 1 ‘ trm_Close
Tsu.file = hFile&

Result& = trm_udt(Tsu)

Prerequisites

The file to be closed must have been successfully opened by the trm_Open function.

Results

If successful… trm_Close will return a result code of 0. The file will be closed and can’t be
accessed by the same file handle any more. To gain access to the file again, a subsequent
trm_Open must successfully assign a new file handle.

If unsuccessful… trm_Close will return one of these result codes …

 2 I/O error

 3 File not open

Positioning

Logical and physical positioning information for the file is cleared.

 13

trm_CloseAll (28)

The trm_CloseAll function is used when you want to close all Tsunami files that were opened
by your application.

Syntax

• String-based API

Result& = trm_CloseAll

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 28 ‘ trm_CloseAll

Result& = trm(Op&, 0, 0, 0, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 28 ‘ trm_CloseAll

Result& = trm_udt(Tsu)

Prerequisites

The file(s) to be closed must have been opened by the trm_Open function.

Results

If successful… trm_CloseAll will return a result code of 0. All open files will be closed and
can’t be accessed by the same file handles any more. To gain access to any of the files again,
subsequent trm_Open calls must successfully assign new file handles.

If unsuccessful… trm_CloseAll will return the following result code …

 2 I/O error

Positioning

Logical and physical positioning information for the files is cleared.

 14

trm_Count (17)

trm_Count returns the current record count for the designated file.

Syntax

• String-based API

Total& = trm_Count(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 17 ‘ trm_Count

Result& = trm(Op&, hFile&, 0, 0, 0, 0, KeyNo&)

The record count is returned in the KeyNo& parameter.

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 17 ‘ trm_Count
Tsu.file = hFile&

Result& = trm_udt(Tsu)

The record count is returned in the Tsu.keyno element.

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

If successful… trm_Count will return a value of 0 or greater, representing the current number
of records stored in the Tsunami file.

If unsuccessful… trm_Count will return one of these result codes (Note: When unsuccessful,
the string-based API for this function returns the result code as a negative) …

 2 I/O error

 3 File not open

99 Time-out

 15

trm_Count (17) (continued)

Positioning

This function has no affect on positioning information.

 16

trm_Create (14)

The trm_Create function allows you to create (or recreate) a Tsunami file. Tsunami files can
be created in advance and shipped with your application simply by writing a short stand-alone
program that uses trm_Create to produce the necessary files, or you can produce your
Tsunami files from within your application at run time. Your application might also need to
create temporary Tsunami files from time to time for collecting & sorting subsets of records
selected from one or more Tsunami files for a custom list or report.

Syntax

• String-based API

Result& = trm_Create(File$, FileDef$, OverWrite&)

… where File$ represents a string variable holding the name of the file to be created,
optionally including a valid path. If you do specify a path, it must be a complete path, including
the drive letter.

… where FileDef$ respresents a string variable holding the information used by Tsunami to
create a new empty data file. You can find a detailed description of the FileDef$ string
beginning on the next page.

… where OverWrite& holds a value of 1 or 0 (Yes or No) to let Tsunami know whether or not
you want to be notified when a file already exists before it’s created. A value of 1 instructs
Tsunami to create the new file even if the file already exists.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 14 ‘ trm_Create
DataPtr& = StrPtr(FileDef$)
DataLen& = Len(FileDef$)
KeyPtr& = StrPtr(File$)
KeyLen& = Len(File$)
KeyNo& = OverWrite&

Result& = trm(Op&, 0, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 14 ‘ trm_Create
Tsu.dataptr = StrPtr(FileDef$)
Tsu.datalen = Len(FileDef$)
Tsu.keyptr = StrPtr(File$)
Tsu.keylen = Len(File$)
Tsu.keyno = OverWrite&

Result& = trm_udt(Tsu)

 17

trm_Create (14) (continued)

Prerequisites

The FileDef$ string must be properly constructed as outlined on the following pages. If you’re
re-creating an existing Tsunami file, the file can’t currently be open by any other application,
thread or user.

Results

If successful… trm_Create will return a result code of 0. The file will be created and closed. It
must then be opened with a successful trm_Open call (which returns a file handle) before it
can be accessed.

If unsuccessful… trm_Create will return one of these result codes …

 2 I/O error

 10 Invalid page size

 11 Invalid number of key segments

 12 Invalid file definition string

 13 Invalid key segment position

 14 Invalid key segment length

 15 Inconsistent key segment definitions

 31 File already exists (if OverWrite& was set to a value of 0)

Positioning

There is no positioning information to be affected.

The File Definition String

The first 3 bytes of a file definition string represent instructions to Tsunami…

The first byte must be ASCII character 1 to 8, telling Tsunami what page size you want to use
for this new file (from 1K to 8K, in 1K increments).

The second byte must be either ASCII character 1 or 0 (Yes or No) telling Tsunami whether or
not you want to compress records in this file. This byte can also be used to instruct Tsunami
not to retain it’s unique record IDs during file rebuilds (see page 20 for more info).

The third byte must be ASCII character 1 to 128, telling Tsunami how many key segment
definitions will follow in the FileDef$ string.

 FileDef$ = Chr(PageSize&) & _
 Chr(Compress&) & _
 Chr(Segments&)

 18

trm_Create (14) (continued)

The File Definition String (continued)

Immediately following the first three bytes, you must define the first key segment definition
block. Each key segment definition block consists of 30 bytes and starts with a 25 byte
description of the key segment for future reference. You aren’t required to include a key
segment description, but the 25 bytes must be there, whether blank or not…

 Example: Dim SegName As String * 25

 SegName = "Customer Name"

The first byte following the key segment description must be ASCII character 1 to 128, defining
which key this segment belongs to (subject to page size limits on key segments… see page 2).
Tsunami allows multi-segmented keys, so if two or more consecutive key segments have the
same key number, Tsunami will understand that those key segments are to be concatenated
into a single key…

 Example: KeyNo& = 1

 Chr(KeyNo&)

The next two bytes must be a 2-byte string representation of the key segment’s starting
position within the records to be stored in this file. These two bytes must equate to a number
between 1 and 65,535 since a key segment must begin within the first 65,535 bytes of any
record…

 Example: SegPos& = 7

 Chr(SegPos& Mod 256) & _
 Chr(SegPos& \ 256)

The next byte must be ASCII character 1 to 255, representing the length of this key segment…

 Example: SegLen& = 43

 Chr(SegLen&)

The next byte represents the “key flags” for this key segment. This “key flags” byte is a bit-
mask used to determine if the keys in this index are going to be case-sensitive, if duplicate
keys will be allowed, if key compression is to be used and if the key segment is binary rather
than text. The bit-mask is formed by adding none, some or all of the following four constants…

CASE_SENSITIVE • NO_DUPLICATES • NO_COMPRESSION • BINARY_KEY

 Example: KeyFlags& = NO_DUPLICATES + NO_COMPRESSION

 Chr(KeyFlags&)

Combining all of the elements that were just described, a complete key segment definition
block is added to the file definition string as follows…

 FileDef$ = FileDef$ & SegName & _
 Chr(KeyNo&) & _
 Chr(SegPos& Mod 256) & _
 Chr(SegPos& \ 256) & _
 Chr(SegLen&) & _
 Chr(KeyFlags&)

 19

trm_Create (14) (continued)

The File Definition String (continued)

It should be noted if you leave the KeyFlags& variable set to 0 (none of Tsunami’s four key flag
constants are applied) then this index will contain keys with Tsunami’s standard attributes…
case-insensitive, duplicates allowed, key compression will be used and the keys are text
values (non-binary).

You may add up to 128 key segment definition blocks (30 bytes each) to a file definition string,
subject to page size limits on key segments. If you make any mistakes creating the file
definition string, Tsunami will return a result code indicating an error condition. For a complete
description of the error conditions that could be returned by trm_Create, see result code 12 in
the RESULT CODES list in Appendix “C” near the end of this document.

If two or more key segment definition blocks share the same key number, they must be added
to the file definition string in the order you want them to be concatenated to form the key.

The key numbers assigned in key segment definition blocks must appear in a file definition
string in natural sequential order. In other words, all key segment definition blocks for key #1
must come first, any key segment definition blocks for key #2 must come next, and so on. Key
numbers should start with #1 and gaps in key numbers are not allowed. All key segment
definition blocks in a multi-segmented key must have matching key flags.

Binary Keys

If the BINARY_KEY key flag is applied, Tsunami will perform certain functions internally to
ensure proper sorting of the binary key segments. Binary key segments can be either of the
following two types of binary variables… a 2-byte INTEGER or a 4-byte LONG INTEGER.
Both are “signed” values that will hold either negative or positive values. When defining the
segment, it must be one of those two lengths (2 or 4 bytes). If the binary segment is defined
with any other length, trm_Create will return an “Invalid key segment length” result code (14).

By it’s very nature, any binary key segment could easily contain the ASCII character 32.
Tsunami’s key compression feature shouldn’t be used with binary keys, as it would strip any
leading or trailing blank spaces (ASCII character 32) from the key, and would compact any run
of contiguous blank spaces into a single blank space. This could obviously change the key
segment’s length and it’s value… not good.

For this reason, whenever the BINARY_KEY key flag is applied during the definition of a key
segment, Tsunami also forces the NO_COMPRESSION key flag internally. Therefore, you
don’t need to specify the NO_COMPRESSION key flag for a binary key segment. It certainly
won’t hurt anything if you do, but it simply isn’t necessary.

Tsunami’s standard key attributes include case-insensitivity, meaning all alpha characters in a
key are converted to upper case before they are inserted in an index. Binary keys may also
contain the same ASCII codes as lower case alpha characters which would be incorrectly
changed to upper case unless the CASE_SENSITIVE key flag is applied to the binary key

 20

trm_Create (14) (continued)

Binary Keys (continued)

segment. Therefore, Tsunami forces the CASE_SENSITIVE key flag internally for all binary
key segments… you don’t need to specify it when defining a binary key segment. Again, it
won’t hurt anything if you do, but it simply isn’t necessary.

In other words, these two key flag definitions are identical…

 Chr(BINARY_KEY)

 Chr(BINARY_KEY + NO_COMPRESSION + CASE_SENSITIVE)

Because a binary key segment can be part of a multi-segmented key that also contains text
segments, there is one important restriction Tsunami must enforce. Since key compression is
applied to each key as a whole, multi-segmented keys that contain one or more binary
segments require special attention. All non-binary segments of such a multi-segmented key
require the NO_COMPRESSION key flag in order to be consistent with the binary segment(s)
in the key. If they are not so defined, trm_Create returns an “Inconsistent key segment
definitions” result code (15).

Unique Record IDs

A unique ID is assigned to every record inserted into a Tsunami file. This record ID is used by
Tsunami internally to tie index keys to records and is also used as the first 4 bytes of any
record pointer returned by Tsunami’s trm_GetPosition function. These unique record IDs are
“static”… they’re intended to remain unchanged for the life of the record, and beyond. If a
record is deleted, it’s unique ID will never be reused by a subsequent insertion.

Unique record IDs are even preserved during a file rebuild. The record IDs are carried over
into the rebuilt file along with the records. However, if you don’t want the record IDs preserved
when you run trm_Rebuild, define your Tsunami file with the REBUILD_IDS equate applied to
the second byte of the file definition string as follows…

 FileDef$ = Chr(PageSize&) & _
 Chr(Compress& + REBUILD_IDS) & _
 Chr(Segments&)

Tsunami will then know it should not carry the existing record IDs into the newly rebuilt file,
assigning new unique IDs to the records as it rebuilds the file.

The permanent nature of Tsunami’s unique record IDs makes it possible for you to “use” those
IDs for various purposes within your applications. You can depend on them to remain static.
To obtain a record’s unique ID, simply call trm_GetPosition and convert the first 4 bytes of the
12-byte record pointer into a long integer.

If you do intend to use Tsunami’s unique record IDs in your applications, be extremely careful
not to rebuild the file with REBUILD_IDS applied, or the IDs will most certainly change in the
process.

 21

trm_CurrKeyPos (45)

trm_CurrKeyPos returns the approximate position of the logical current record in the current
key path. This function is designed for use with scroll bars and listview controls. Once a
logical current record is established, calling this function will tell you approximately where that
record resides in the current key path. Simply divide that value by the number of records in
the file to arrive at a percentage that can be applied against a scroll bar’s maximum range to
determine the correct thumb position.

Note: This function is designed for use with Tsunami files that contain too many records to
load into a listview at once. It’s not recommended to use this function with small files (less
than 5,000 records, or so)… the accuracy of the approximation might not be acceptable.

Syntax

• String-based API

RecPos& = trm_CurrKeyPos(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 45 ‘ trm_CurrKeyPos

Result& = trm(Op&, hFile&, 0, 0, 0, 0, KeyNo&)

The approximate record position is returned in the KeyNo& parameter.

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 45 ‘ trm_CurrKeyPos
Tsu.file = hFile&

Result& = trm_udt(Tsu)

The approximate record position is returned in the Tsu.keyno element.

The approximate position returned by trm_CurrKeyPos is calculated using the location of the
key page holding the current record’s key, the total number of key pages in the current key
path and the total number of keys in the current key path. Therefore, the returned value will
always be most accurate when population of the file’s key pages is fairly even. Remember
that the returned value is an approximation, which is normally adequate for use with scroll bars
and listview controls. Do not depend on the returned value to be the exact position of the
current record in the current key path.

It should be noted that using trm_CurrKeyPos to access a Tsunami file in single-user mode
across a network connection has little impact on performance. However, using this f unction in
multi-user mode does. Tsunami has to check the target file for possible changes made by
other users between each access in order to maintain the integrity of it’s results.

 22

trm_CurrKeyPos (45) (continued)

Prerequisites

The designated file must have been opened by the trm_Open function and a logical current
record must have been established by a successful call to trm_Insert, trm_Update or a
trm_Get function.

Results

If successful… trm_CurrKeyPos will return a value of 1 or greater, representing the logical
current record’s approximate position in the current key path for the designated Tsunami file.

If unsuccessful… trm_CurrKeyPos will return one of these result codes (Note: When
unsuccessful, the string-based API for this function returns the result code as a negative) …

 2 I/O error

 3 File not open

 7 File corrupt

 8 No current position

 99 Time-out

Positioning

This function has no affect on positioning information.

 23

trm_Delete (4)

The trm_Delete function removes the logical current record from the designated Tsunami file.

Syntax

• String-based API

Result& = trm_Delete(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 4 ‘ trm_Delete

Result& = trm(Op&, hFile&, 0, 0, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 4 ‘ trm_Delete
Tsu.file = hFile&

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function and a logical current
record must have been established by a successful call to trm_Insert, trm_Update or any of
the trm_Get functions.

Results

If successful… trm_Delete will return a value of 0 and the current record (and all related keys)
will be permanently removed from the file.

If unsuccessful… trm_Delete will return one of these result codes …

 2 I/O error

 3 File not open

 7 File corrupt

 8 No current position

 22 Lost record position

 46 Access to file denied

 99 Time-out

 24

trm_Delete (4) (continued)

Positioning

Logical current record positioning information for the designated file is cleared. However,
position information for the logical next record (if any) and the logical previous record (if any)
remain intact. Physical positioning information is discarded.

 25

trm_FileIsOpen (16)

The trm_FileIsOpen function tells you whether or not the designated file handle is assigned to
a Tsunami file that is currently opened by your application.

Syntax

• String-based API

Result& = trm_FileIsOpen(hFile&)

… where hFile& holds the file handle you want to test for open status.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 16 ‘ trm_FileIsOpen

Result& = trm(Op&, hFile&, 0, 0, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 16 ‘ trm_FileIsOpen
Tsu.file = hFile&

Result& = trm_udt(Tsu)

Prerequisites

There are no prerequisites for this function call.

Results

trm_FileIsOpen will return a value of 1 if the file handle is valid and assigned to a Tsunami file
that is currently opened by your application.

trm_FileIsOpen will return a value of 0 if the file handle is not assigned to a Tsunami file that is
currently opened by your application.

Positioning

This function has no affect on positioning information.

 26

trm_FileSize (18)

The trm_FileSize function will return the file size (in KBytes) of the designated Tsunami file.
Multiply the return value by 1024 to determine the file size in bytes.

Syntax

• String-based API

FSize& = trm_FileSize(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 18 ‘ trm_FileSize

Result& = trm(Op&, hFile&, 0, 0, 0, 0, KeyNo&)

The file size (in KBytes) is returned in the KeyNo& parameter.

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 18 ‘ trm_FileSize
Tsu.file = hFile&

Result& = trm_udt(Tsu)

The file size (in KBytes) is returned in the Tsu.keyno element.

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

If successful… trm_FileSize will return a value representing the current file size in Kbytes.
Even though a Tsunami file can potentially grow to a maximum size of 16 terabytes (when
using an 8K page size) 2 terabytes is the maximum file size that can be reported.

If unsuccessful… trm_FileSize will return one of these result codes (Note: When unsuccessful,
the string-based API for this function returns the result code as a negative) …

 3 File not open

 99 Time-out

 27

trm_FileSize (18) (continued)

Positioning

This function has no affect on positioning information.

 28

trm_Flush (29)

The trm_Flush function will force the header records for all open Tsunami files (and all disk
writes being cached by the operating system) to be physically flushed to disk. You only need
this function when accessing files in single-user mode. It isn’t necessary to call this function in
multi-user mode, since Tsunami already does these things to maintain multi-user file integrity.

Note: trm_Flush has no affect on any cache created and maintained by trm_Accelerate.

Syntax

• String-based API

Result& = trm_Flush

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 29 ‘ trm_Flush

Result& = trm(Op&, 0, 0, 0, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 29 ‘ trm_Flush

Result& = trm_udt(Tsu)

Prerequisites

Files must have been opened by the trm_Open function.

Results

If successful… trm_Flush will return a value of 0 and the header records for all open Tsunami
files (and all disk writes being cached by the operating system) will be forced to disk.

If unsuccessful… trm_Flush will return the following result code …

 2 I/O error

Positioning

Positioning information remains unchanged for all open files.

 29

trm_GetByKeyPos (44)

trm_GetByKeyPos allows you to retrieve a record from a Tsunami file by simply designating
it’s logical position in the current key path. This function is designed for use with scroll bars
and listview controls. The position of a scroll bar’s thumb can be used to calculate the value
passed to this function in order to retrieve a record that corresponds with the thumb’s relative
position within the scroll bar. Since this establishes a logical current record, subsequent calls
to trm_GetNext or trm_GetPrev could then be made to retrieve additional records, if needed.

Syntax

• String-based API

Record$ = trm_GetByKeyPos(hFile&, KeyPos&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyPos& represents a long integer variable holding a value from 1 to the total
number of records in the designated Tsunami file (the logical position in the current key path
for the record you want to retrieve).

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 44 ‘ trm_GetByKeyPos
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyNo& = KeyPos&

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 44 ‘ trm_GetByKeyPos
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyno = KeyPos&

Result& = trm_udt(Tsu)

The record returned by trm_GetByKeyPos is one that is located “near” the designated position
in the current key path. Tsunami calculates an approximate position using the KeyPos& value,
the total number of keys in the current key path and the total number of key pages in the
current key path. Therefore, the returned record will be most accurate when population of the
file’s key pages is fairly even. Remember that the returned record is the result of an
approximation, which is normally adequate for use with scroll bars and listview controls. Do
not depend on the returned record being from the exact position that you requested in the
current key path.

 30

trm_GetByKeyPos (44) (continued)

Syntax (continued)

It should be noted that using trm_GetByKeyPos to access a Tsunami file in single-user mode
across a network connection has little impact on performance. However, using this function in
multi-user mode does. Tsunami has to check the target file for possible changes made by
other users between each access in order to maintain the integrity of it’s results.

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetByKeyPos(hFile& + KEY_ONLY, KeyPos&)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 44 + KEY_ONLY ‘ trm_GetByKeyPos

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 44 + KEY_ONLY ‘ trm_GetByKeyPos

Prerequisites

The designated file must have been opened by the trm_Open function and a current key path
must have been established.

Results

If successful… trm_GetByKeyPos will return the desired record to be stored in a string variable
or UDT.

If unsuccessful… trm_GetByKeyPos will return a null string and one of the following result
codes. In the string-based API, a subsequent call to trm_Result is required to obtain the result
code.

 2 I/O error

 3 File not open

 4 Key not found

 7 File corrupt

 50 Data buffer too small

 99 Time-out

 31

trm_GetByKeyPos (44) (continued)

Results (continued)

If trm_GetByKeyPos returns a null string (because the call was unsuccessful) and a
subsequent call to trm_Result returns a result code of 0, then the file handle you passed must
have been invalid.

Positioning

Any record retrieved by a successful call to the trm_GetByKeyPos function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 32

trm_GetDirect (23)

The trm_GetDirect function allows you to use a 12-byte record pointer obtained from the
trm_GetPosition function to retrieve a record directly.

Syntax

• String-based API

Record$ = trm_GetDirect(hFile&, RecPtr$)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where RecPtr$ represents a string variable holding a valid 12-byte record pointer returned
by a call to the trm_GetPosition function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 23 ‘ trm_GetDirect
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyPtr& = StrPtr(RecPtr$)
KeyLen& = Len(RecPtr$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 23 ‘ trm_GetDirect
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyptr = StrPtr(RecPtr$)
Tsu.keylen = Len(RecPtr$)

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetDirect(hFile& + KEY_ONLY, RecPtr$)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 23 + KEY_ONLY ‘ trm_GetDirect

 33

trm_GetDirect (23) (continued)

Key-Only Search (continued)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 23 + KEY_ONLY ‘ trm_GetDirect

Prerequisites

The designated file must have been opened by the trm_Open function, a current key path
must have been established and the 12-byte record pointer must have been returned by a
successful call to the trm_GetPosition function.

Results

If successful… trm_GetDirect will return the desired record to be stored in a string variable or
UDT.

If unsuccessful… trm_GetDirect will return a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 21 Invalid record pointer

 22 Lost record position

 50 Data buffer too small

 99 Time-out

If trm_GetDirect returns a null string (because the call was unsuccessful) and a subsequent
call to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetDirect function is immediately
established as the logical current record as well as the physical current record for the
designated file.

Note: If a current key path has not yet been established before calling trm_GetDirect, Tsunami
will set key path #1 as the current key path and internal positioning information will be based
on that index. If that’s not acceptable to you, make a call to trm_SetKeyPath prior to
trm_GetDirect in order to establish the key path you desire.

 34

trm_GetEqual (5)

The trm_GetEqual function will search the designated file using the designated key path for an
exact match of the supplied key value.

Syntax

• String-based API

Record$ = trm_GetEqual(hFile&, KeyNo&, KeyVal$)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

… where KeyVal$ represents a string variable holding the key value that you want Tsunami to
search for.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 5 ‘ trm_GetEqual
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyPtr& = StrPtr(KeyVal$)
KeyLen& = Len(KeyVal$)
KeyNo& = 1

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 5 ‘ trm_GetEqual
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyptr = StrPtr(KeyVal$)
Tsu.keylen = Len(KeyVal$)
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetEqual(hFile& + KEY_ONLY, KeyNo&, KeyVal$)

 35

trm_GetEqual (5) (continued)

Key-Only Search (continued)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 5 + KEY_ONLY ‘ trm_GetEqual

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 5 + KEY_ONLY ‘ trm_GetEqual

Prerequisites

The designated file must have been opened by the trm_Open function and the designated key
path must be valid for this file.

Results

If successful… trm_GetEqual will return the desired record to be stored in a string variable or
UDT.

If unsuccessful… trm_GetEqual will return a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 4 Key not found

 6 Invalid key number

 7 File corrupt

 50 Data buffer too small

 99 Time-out

If trm_GetEqual returns a null string (because the call was unsuccessful) and a subsequent
call to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetEqual function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 36

trm_GetEqualOrGreater (9)

The trm_GetEqualOrGreater function will search the designated file using the designated key
path for an exact match of the supplied key value. If an exact match doesn’t exist, it will return
the record that has the key value closest to (yet greater than) the value being searched for (if
any exists).

Syntax

• String-based API

Record$ = trm_GetEqualOrGreater(hFile&, KeyNo&, KeyVal$)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

… where KeyVal$ represents a string variable holding the key value that you want Tsunami to
search for.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 9 ‘ trm_GetEqualOrGreater
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyPtr& = StrPtr(KeyVal$)
KeyLen& = Len(KeyVal$)
KeyNo& = 1

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 9 ‘ trm_GetEqualOrGreater
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyptr = StrPtr(KeyVal$)
Tsu.keylen = Len(KeyVal$)
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetEqualOrGreater(hFile& + KEY_ONLY, KeyNo&, KeyVal$)

 37

trm_GetEqualOrGreater (9) (continued)

Key-Only Search (continued)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 9 + KEY_ONLY ‘ trm_GetEqualOrGreater

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 9 + KEY_ONLY ‘ trm_GetEqualOrGreater

Prerequisites

The designated file must have been opened by the trm_Open function and the designated key
path must be valid for this file.

Results

If successful… trm_GetEqualOrGreater will return a record to be stored in a string variable or
UDT.

If unsuccessful… trm_GetEqualOrGreater will return a null string and one of the following
result codes. In the string-based API, a subsequent call to trm_Result is required to obtain the
result code.

 2 I/O error

 3 File not open

 6 Invalid key number

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

If trm_GetEqualOrGreater returns a null string (because the call was unsuccessful) and a
subsequent call to trm_Result returns a result code of 0, then the file handle you passed must
have been invalid.

Positioning

Any record retrieved by a successful call to the trm_GetEqualOrGreater function is
immediately established as the logical current record as well as the physical current record for
the designated file.

 38

trm_GetEqualOrLess (11)

The trm_GetEqualOrLess function will search the designated file using the designated key
path for an exact match of the supplied key value. If an exact match doesn’t exist, it will return
the record with the key value closest to (yet less than) the value being searched for (if any
exists).

Syntax

• String-based API

Record$ = trm_GetEqualOrLess(hFile&, KeyNo&, KeyVal$)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

… where KeyVal$ represents a string variable holding the key value that you want Tsunami to
search for.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 11 ‘ trm_GetEqualOrLess
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyPtr& = StrPtr(KeyVal$)
KeyLen& = Len(KeyVal$)
KeyNo& = 1

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 11 ‘ trm_GetEqualOrLess
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyptr = StrPtr(KeyVal$)
Tsu.keylen = Len(KeyVal$)
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetEqualOrLess(hFile& + KEY_ONLY, KeyNo&, KeyVal$)

 39

trm_GetEqualOrLess (11) (continued)

Key-Only Search (continued)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 11 + KEY_ONLY ‘ trm_GetEqualOrLess

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 11 + KEY_ONLY ‘ trm_GetEqualOrLess

Prerequisites

The designated file must have been opened by the trm_Open function and the designated key
path must be valid for this file.

Results

If successful… trm_GetEqualOrLess will return a record to be stored in a string variable or
UDT.

If unsuccessful… trm_GetEqualOrLess will return a null string and one of the following result
codes. In the string-based API, a subsequent call to trm_Result is required to obtain the result
code.

 2 I/O error

 3 File not open

 6 Invalid key number

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

If trm_GetEqualOrLess returns a null string (because the call was unsuccessful) and a
subsequent call to trm_Result returns a result code of 0, then the file handle you passed must
have been invalid.

Positioning

Any record retrieved by a successful call to the trm_GetEqualOrLess function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 40

trm_GetFileDef (36)

The trm_GetFileDef function provides a way to retrieve a file definition string from the header
of an open Tsunami file. That file definition string can then be used to create another Tsunami
file with identical structure (a clone) by using it in a subsequent call to the trm_Create function,
or it could also be used to simply determine how the designated Tsunami file was originally
defined, including the key segment definition blocks.

Note: A complete description of Tsunami’s file definition string can be found beginning on
page 17 (in the trm_Create section).

Syntax

• String-based API

FileDef$ = trm_GetFileDef(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 36 ‘ trm_GetFileDef
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 36 ‘ trm_GetFileDef
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

If successful… trm_GetFileDef will return a file definition string.

If unsuccessful… trm_GetFileDef will return a null string and the following result code. In the
string-based API, a subsequent call to trm_Result is required to obtain the result code.

3 File not open

 41

trm_GetFileDef (36) (continued)

Positioning

This function has no affect on positioning information.

After a successful call to trm_GetFileDef, the following code will break down the information
contained in the file definition string…

 ' define a UDT

 Type KeySegment
 Descrip As String * 25
 KeyNo As Long
 SegPos As Long
 SegLen As Long
 KeyFlags As Long
 End Type

 ' elsewhere in your code ...

 FDef$ = trm_GetFileDef(hFile&)

 If Len(FDef$) Then

 PageSize& = Asc(Mid(FDef$, 1, 1)) ' 1K - 8K
 Compress& = (Asc(Mid(FDef$, 2)) AND 1) ' compressed or uncompressed
 Preserve& = (Asc(Mid(FDef$, 2)) AND 2) ' preserve record IDs during rebuilds?
 Segments& = Asc(Mid(FDef$, 3, 1)) ' 1 - 128

 Dim KeySeg(1 To Segments&) As KeySegment

 For Seg& = 1 To Segments&
 KeySeg(Seg&).Descrip = Mid(FDef$, 4 + (Seg& - 1) * 30, 25)
 KeySeg(Seg&).KeyNo = Asc(Mid(FDef$, 29 + (Seg& - 1) * 30, 1))
 KeySeg(Seg&).SegPos = Asc(Mid(FDef$, 30 + (Seg& - 1) * 30, 1)) + _
 Asc(Mid(FDef$, 31 + (Seg& - 1) * 30, 1)) * 256
 KeySeg(Seg&).SegLen = Asc(Mid(FDef$, 32 + (Seg& - 1) * 30, 1))
 KeySeg(Seg&).KeyFlags = Asc(Mid(FDef$, 33 + (Seg& - 1) * 30, 1))
 Next

 End If

 ' if needed, key flags can be determined for any key segment as follows
 ' (flags are considered “set” if their values are non-zero)

 Seg& = 1
 CaseSensitive& = (KeySeg(Seg&).KeyFlags And 1)
 NoDuplicates& = (KeySeg(Seg&).KeyFlags And 2)
 NotCompressed& = (KeySeg(Seg&).KeyFlags And 4)
 KeyIsBinary& = (KeySeg(Seg&).KeyFlags And 8)

 Seg& = 2
 etc ...

 42

trm_GetFileVer (25)

The trm_GetFileVer function will tell you which version of Tsunami created the designated
Tsunami file.

Syntax

• String-based API

FileVer$ = trm_GetFileVer(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 25 ‘ trm_GetFileVer
DataPtr& = StrPtr(FileVer$)
DataLen& = Len(FileVer$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 25 ‘ trm_GetFileVer
Tsu.file = hFile&
Tsu.dataptr = StrPtr(FileVer$)
Tsu.datalen = Len(FileVer$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

If successful… trm_GetFileVer will return a 3-byte string. That string holds the major and
minor version numbers, separated by a period (eg: 2.4).

If unsuccessful… trm_GetFileVer will return a null string and the following result code. In the
string-based API, a subsequent call to trm_Result is required to obtain the result code.

 3 File not open

Positioning

This function has no affect on positioning information.

 43

trm_GetFirst (12)

The trm_GetFirst function will search the designated file using the designated key path to
locate and retrieve the record with the lowest key value in that key path.

Syntax

• String-based API

Record$ = trm_GetFirst(hFile&, KeyNo&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 12 ‘ trm_GetFirst
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyNo& = 1

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 12 ‘ trm_GetFirst
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetFirst(hFile& + KEY_ONLY, KeyNo&)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 12 + KEY_ONLY ‘ trm_GetFirst

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 12 + KEY_ONLY ‘ trm_GetFirst

 44

trm_GetFirst (12) (continued)

Prerequisites

The designated file must have been opened by the trm_Open function and the designated key
path must be valid for this file.

Results

If successful… trm_GetFirst will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_GetFirst will return a null string and one of the following result codes. In
the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 6 Invalid key number

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

If trm_GetFirst returns a null string (because the call was unsuccessful) and a subsequent call
to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetFirst function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 45

trm_GetGreater (8)

The trm_GetGreater function will search the designated file using the designated key path to
locate and retrieve the first record with a key value that is greater than the supplied key value.

Syntax

• String-based API

Record$ = trm_GetGreater(hFile&, KeyNo&, KeyVal$)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

… where KeyVal$ represents a string variable holding the key value that you want Tsunami to
use in it’s search for a greater key value.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 8 ‘ trm_GetGreater
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyPtr& = StrPtr(KeyVal$)
KeyLen& = Len(KeyVal$)
KeyNo& = 1

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 8 ‘ trm_GetGreater
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyptr = StrPtr(KeyVal$)
Tsu.keylen = Len(KeyVal$)
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetGreater(hFile& + KEY_ONLY, KeyNo&, KeyVal$)

 46

trm_GetGreater (8) (continued)

Key-Only Search (continued)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 8 + KEY_ONLY ‘ trm_GetGreater

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 8 + KEY_ONLY ‘ trm_GetGreater

Prerequisites

The designated file must have been opened by the trm_Open function and the designated key
path must be valid for this file.

Results

If successful… trm_GetGreater will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_GetGreater will return a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 6 Invalid key number

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

If trm_GetGreater returns a null string (because the call was unsuccessful) and a subsequent
call to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetGreater function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 47

trm_GetLast (13)

The trm_GetLast function will search the designated file using the designated key path to
locate and retrieve the record with the highest key value in that key path.

Syntax

• String-based API

Record$ = trm_GetLast(hFile&, KeyNo&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 13 ‘ trm_GetLast
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyNo& = 1

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 13 ‘ trm_GetLast
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetLast(hFile& + KEY_ONLY, KeyNo&)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 13 + KEY_ONLY ‘ trm_GetLast

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 13 + KEY_ONLY ‘ trm_GetLast

 48

trm_GetLast (13) (continued)

Prerequisites

The designated file must have been opened by the trm_Open function and the designated key
path must be valid for this file.

Results

If successful… trm_GetLast will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_GetLast will return a null string and one of the following result codes. In
the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 6 Invalid key number

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

If trm_GetLast returns a null string (because the call was unsuccessful) and a subsequent call
to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetLast function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 49

trm_GetLess (10)

The trm_GetLess function will search the designated file using the designated key path to
locate and retrieve the first record with a key value that is less than the supplied key value.

Syntax

• String-based API

Record$ = trm_GetLess(hFile&, KeyNo&, KeyVal$)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

… where KeyVal$ represents a string variable holding the key value that you want Tsunami to
use in it’s search for a lower key value.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 10 ‘ trm_GetLess
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)
KeyPtr& = StrPtr(KeyVal$)
KeyLen& = Len(KeyVal$)
KeyNo& = 1

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 10 ‘ trm_GetLess
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)
Tsu.keyptr = StrPtr(KeyVal$)
Tsu.keylen = Len(KeyVal$)
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetLess(hFile& + KEY_ONLY, KeyNo&, KeyVal$)

 50

trm_GetLess (10) (continued)

Key-Only Search (continued)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 10 + KEY_ONLY ‘ trm_GetLess

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 10 + KEY_ONLY ‘ trm_GetLess

Prerequisites

The designated file must have been opened by the trm_Open function and the designated key
path must be valid for this file.

Results

If successful… trm_GetLess will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_GetLess will return a null string and one of the following result codes. In
the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 6 Invalid key number

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

If trm_GetLess returns a null string (because the call was unsuccessful) and a subsequent call
to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetLess function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 51

trm_GetNext (6)

The trm_GetNext function will retrieve the logical next record in sequence using the current
key path in the designated file.

Syntax

• String-based API

Record$ = trm_GetNext(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 6 ‘ trm_GetNext
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 6 ‘ trm_GetNext
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetNext(hFile& + KEY_ONLY)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 6 + KEY_ONLY ‘ trm_GetNext

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 6 + KEY_ONLY ‘ trm_GetNext

 52

trm_GetNext (6) (continued)

Prerequisites

The designated file must have been opened by the trm_Open function and a logical current
record must have been established.

Results

If successful… trm_GetNext will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_GetNext will return a null string and one of the following result codes. In
the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 7 File corrupt

 8 No current position

 9 End of file

 22 Lost record position

 50 Data buffer too small

 99 Time-out

If trm_GetNext returns a null string (because the call was unsuccessful) and a subsequent call
to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetNext function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 53

trm_GetPosition (22)

The trm_GetPosition function returns a 12-byte record pointer to the current record, the
previous record or the next record in the designated file. This record pointer can be used in a
subsequent call to trm_GetDirect to retrieve that record directly. There is no disk I/O involved
in a trm_GetPosition call.

Syntax

• String-based API

RecPtr$ = trm_GetPosition(hFile&, 0)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

… where the function’s second parameter holds one of the following values…

 0 = Return a pointer to the current record
 -1 = Return a pointer to the previous record (if any)
 1 = Return a pointer to the next record (if any)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 22 ‘ trm_GetPosition
DataPtr& = StrPtr(RecPtr$)
DataLen& = Len(RecPtr$)
KeyNo& = 0

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 22 ‘ trm_GetPosition
Tsu.file = hFile&
Tsu.dataptr = StrPtr(RecPtr$)
Tsu.datalen = Len(RecPtr$)
Tsu.keyno = 0

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function and a current record
(logical or physical) must have been established.

 54

trm_GetPosition (22) (continued)

Results

If successful… trm_GetPosition will return a 12-byte record pointer.

If unsuccessful… trm_GetPosition returns a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 3 File not open

 8 No current position

 9 End of file

If trm_GetPosition returns a null string (because the call was unsuccessful) and a subsequent
call to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

This function has no affect on positioning information.

Unique Record IDs

The first 4 bytes of any 12-byte record pointer returned by a successful call to trm_GetPosition
represents a long integer used internally by Tsunami as that record’s unique record ID. That
record ID is “static”. It will remain unchanged for the life of the record and beyond. If a record
is deleted, it’s unique record ID is never reused by subsequent record insertions.

The only time record IDs are ever changed is during a file rebuild when the REBUILD_IDS
equate has been applied to the second byte of the file definition string (see page 20).

 55

trm_GetPrev (7)

The trm_GetPrev function will retrieve the logical previous record in sequence using the
current key path in the designated file.

Syntax

• String-based API

Record$ = trm_GetPrev(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 7 ‘ trm_GetPrev
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 7 ‘ trm_GetPrev
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Key-Only Search

This function supports key-only searches using Tsunami’s KEY_ONLY constant (see page 9
for more details).

• String-based API

RetVal$ = trm_GetPrev(hFile& + KEY_ONLY)

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 7 + KEY_ONLY ‘ trm_GetPrev

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 7 + KEY_ONLY ‘ trm_GetPrev

 56

trm_GetPrev (7) (continued)

Prerequisites

The designated file must have been opened by the trm_Open function and a logical current
record must have been established.

Results

If successful… trm_GetPrev will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_GetPrev will return a null string and one of the following result codes. In
the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 7 File corrupt

 8 No current position

 9 End of file

 22 Lost record position

 50 Data buffer too small

 99 Time-out

If trm_GetPrev returns a null string (because the call was unsuccessful) and a subsequent call
to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_GetPrev function is immediately
established as the logical current record as well as the physical current record for the
designated file.

 57

trm_Insert (2)

trm_Insert will insert the supplied record and it’s keys into the designated Tsunami file.

Syntax

• String-based API

Result& = trm_Insert(hFile&, Record$)

… where hFile& holds a file handle returned by the trm_Open function.

… where Record$ represents a string variable holding the record to be inserted.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 2 ‘ trm_Insert
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 2 ‘ trm_Insert
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function and the Record$
variable must hold a string long enough to satisfy the key extraction definitions for this file.

Results

If successful… trm_Insert will insert the record and it’s keys into the designated file, returning a
result code of 0.

If unsuccessful… trm_Insert will return one of these result codes …

 2 I/O error

 3 File not open

 5 Duplicate key

 20 Invalid record length

 46 Access to file denied

 99 Time-out

 58

trm_Insert (2) (continued)

Positioning

Any record successfully inserted into a Tsunami file by the trm_Insert function is immediately
established as the logical current record as well as the physical current record for the
designated file.

Note: If a current key path has not yet been established before calling trm_Insert, Tsunami will
set key path #1 as the current key path and internal positioning information will be based on
that index. If that’s not acceptable to you, make a call to trm_SetKeyPath prior to trm_Insert in
order to establish the key path you desire.

 59

trm_Integrity (37)

The trm_Integrity function will temporarily lock the designated Tsunami file while performing a
high-speed scan, reading every index from beginning to end as well as retrieving (and
decompressing) every record to make sure the entire file is readable. For speed
considerations, links between keys and records are not verified… the file is simply tested for
it’s ability to be successfully rebuilt or recovered if need be. It’s a good idea to call this function
just prior to a backup to make sure you won’t be overwriting a good backup with a corrupt file.

Syntax

• String-based API

Do
 Result& = trm_Integrity(hFile&)
 If Result& <= 0 Then Exit Do
 LabelProgress.Caption = Str(Result&) & " %"
 LabelProgress.Refresh
Loop

‘ Result& is either 0 if successful or < 0 if not successful

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 37 ‘ trm_Integrity

Do
 Result& = trm(Op&, hFile&, 0, 0, 0, 0, KeyNo&)
 If Result& Then Exit Do ‘ error
 If KeyNo& = 0 Then Exit Do ‘ finished
 LabelProgress.Caption = Str(KeyNo&) & " %"
 LabelProgress.Refresh
Loop

‘ Result& is either 0 if successful or > 0 if not successful

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 37 ‘ trm_Integrity
Tsu.file = hFile&

Do
 Result& = trm_udt(Tsu)
 If Result& Then Exit Do ‘ error
 If Tsu.keyno = 0 Then Exit Do ‘ finished
 LabelProgress.Caption = Str(Tsu.keyno) & " %"
 LabelProgress.Refresh
Loop

‘ Result& is either 0 if successful or > 0 if not successful

trm_Integrity is one of Tsunami’s three “incremental” functions. Incremental functions perform
a portion of their operation (a minimum of 1%) and then return a value to your application that

 60

trm_Integrity (37) (continued)

Syntax (continued)

represents a percentage of completion. Your application then calls the function again to either
continue or abort the operation. You can use the return values to update the operation’s
progress on screen with a text display or with a progress bar of some kind.

During an incremental function, the Tsunami file is locked in exclusive mode (if it isn’t already)
and can’t be accessed by any other thread, application or user until the function completes or
is aborted by the user.

Note: If you’d like to provide the ability to abort a trm_Integrity function call, execute it within a

thread and change the value of the file handle variable to 0 before the operation has
completed. Tsunami will take that as a signal that you want to abort the integrity check.

Prerequisites

The designated file must have been opened by the trm_Open function. The file can be open in
either single-user mode or multi-user mode… it makes no difference to Tsunami.

Results

If successful… trm_Integrity will return a result code of 0.

If unsuccessful… trm_Integrity will return one of these result codes (Note: When
unsuccessful, the string-based API for this function returns the result code as a negative) …

 2 I/O error

 3 File not open

 7 File corrupt

 99 Time-out

Positioning

This function has no affect on positioning information.

 61

trm_Open (0)

The trm_Open function is used to give your application access to a Tsunami file. The return
value from a successful call to trm_Open should be retained in a long integer variable and
used as the file handle parameter in any other Tsunami function calls that access the file.

Syntax

• String-based API

hFile& = trm_Open(File$, 0)

… where File$ represents a string variable holding the name of the file to be opened,
optionally including a valid path. If you do specify a path, it must be a complete path, including
the drive letter.

… where the function’s second parameter holds one of the following values…

 0 = Open file in single-user, exclusive mode
 1 = Open file in multi-user, read-write mode, locked when writing
 2 = Open file in multi-user, read-only mode, no locking

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 0 ‘ trm_Open
KeyPtr& = StrPtr(File$)
KeyLen& = Len(File$)
KeyNo& = 0 ‘ single-user

Result& = trm(Op&, hFile&, 0, 0, KeyPtr&, KeyLen&, KeyNo&)

If successful, a file handle is returned in the hFile& parameter.

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 0 ‘ trm_Open
Tsu.keyptr = StrPtr(File$)
Tsu.keylen = Len(File$)
Tsu.keyno = 0 ‘ single-user

Result& = trm_udt(Tsu)

If successful, a file handle is returned in the Tsu.file element.

Prerequisites

The designated file must have been created by Tsunami’s trm_Create function.

 62

trm_Open (0) (continued)

Results

If successful… trm_Open will assign a file handle… a value greater than 0.

If unsuccessful… trm_Open will return one of these result codes (Note: When unsuccessful,
the string-based API for this function returns the result code as a negative) …

 1 Not a Tsunami file

 2 I/O error

 30 Access denied

 32 No more file handles

 33 Max files open

 99 Time-out

Positioning

No positioning information is established when a Tsunami file is first opened for access.

 63

trm_Rebuild (38)

The trm_Rebuild function allows you to rebuild a Tsunami file to change it’s file definition,
change the file’s key segment definitions or to simply make the file as compact as possible if a
large number of records have been deleted and you don’t expect any more inserts to occur
that would re-use the vacated space in the file. trm_Rebuild requires a valid header page. If
the file’s header page is damaged, use trm_Recover to salvage the records from the damaged
file.

Syntax

• String-based API

Do
 Result& = trm_Rebuild(File$, SaveFile$, FileDef$)
 If Result& <= 0 Then Exit Do
 LabelProgress.Caption = Str(Result&) & " %"
 LabelProgress.Refresh
Loop

Records& = Abs(Result&)

… where File$ represents a string variable holding the name of the Tsunami file to be rebuilt,
optionally including a valid path. If you do specify a path, it must be a complete path, including
the drive letter.

… where SaveFile$ represents a string variable holding the file name you want the original
Tsunami file saved under, optionally including a valid path. If you include a path in the
SaveFile$ variable, it can be different than the original file’s path. If SaveFile$ is passed as a
null string, the original Tsunami file will be erased after a successful rebuild.

… where FileDef$ respresents a string variable holding the information required by Tsunami to
rebuild the data file. You can find a detailed description of the file definition string in the
trm_Create section of this document, starting on page 17. If FileDef$ is passed as a null
string, Tsunami will assume you want to use the existing file definition string (stored in the file’s
header record) to rebuild the file with no changes.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 38 ‘ trm_Rebuild
DataPtr& = StrPtr(FileDef$)
DataLen& = Len(FileDef$)
KeyPtr& = StrPtr(File$)
KeyLen& = Len(File$)
KeyNo& = 0

Do
 Result& = trm(Op&, 0, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)
 If Result& = 0 Then Exit Do
 LabelProgress.Caption = Str(Result&) & " %"
 LabelProgress.Refresh
Loop

Records& = KeyNo&

 64

trm_Rebuild (38) (continued)

Syntax (continued)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 38 ‘ trm_Rebuild
Tsu.file = 0
Tsu.dataptr = StrPtr(FileDef$)
Tsu.datalen = Len(FileDef$)
Tsu.keyptr = StrPtr(File$)
Tsu.keylen = Len(File$)
Tsu.keyno = 0

Do
 Result& = trm_udt(Tsu)
 If Result& = 0 Then Exit Do
 LabelProgress.Caption = Str(Result&) & " %"
 LabelProgress.Refresh
Loop

Records& = Tsu.keyno

trm_Rebuild is one of Tsunami’s three “incremental” functions. Incremental functions perform
a portion of their operation (a minimum of 1%) and then return a value to your application
representing a percentage of completion. Your application then calls the function again to
either continue or abort the operation. You can use the return values to update the operation’s
progress on screen with a text display or with a progress bar of some kind.

During an incremental function, the Tsunami file is locked in exclusive mode (if it isn’t already)
and can’t be accessed by any other thread, application or user until the function completes or
is aborted by the user.

Note: If you’d like to provide the ability to abort a trm_Rebuild function call, execute it within a

thread and change the File$ variable to a null string before the operation has
completed. In the pointer-based APIs, set the KeyLen& parameter or Tsu.keylen
element to zero. Tsunami will take these as signals that you want to abort the rebuild
operation.

Prerequisites

The Tsunami file must not be open prior to this call.

Results

Once the rebuild operation is finished, the total count of records in the rebuilt file is returned in
the KeyNo parameter. However, in the string-based API, the number of records contained in
the rebuilt file is returned as a negative value in the Result variable. Use the Abs function to
convert it to a positive number.

 65

trm_Rebuild (38) (continued)

Results (continued)

The file is rebuilt using a temporary file in the same directory on the same drive as the original
file. Tsunami does not check the drive for adequate free space before performing the rebuild,
since it has no way of knowing in advance how much room the new file might require. If
Tsunami runs out of room, the rebuild will abort and the temporary file will be erased.

If trm_Rebuild is unsuccessful for any reason, your application will receive a result code of 0,
indicating that the file was not rebuilt. The original file will remain intact exactly as it was
before the rebuild operation began.

Positioning

This function has no affect on positioning information.

Note: The string-based API for trm_Rebuild allows you to instruct Tsunami to save the original

file by passing a SaveFile$ parameter. The pointer-based versions of this function do
not give you an option to save the original. If you’d like to save the origina l when using
trm_Rebuild in a pointer-based API, you must make a copy of the original file yourself
before starting the rebuild.

 66

trm_Recover (39)

The trm_Recover function allows you to retrieve the records from a Tsunami file, and load
them into a “recovery” file. This function can be used even if the Tsunami file or it’s header
page is corrupt, in which case it will recover as many records as possible. The records are
retrieved in physical order.

Syntax

• String-based API

Do
 Result& = trm_Recover(SourceFile$, TargetFile$, PageSize&, Compress&)
 If Result& <= 0 Then Exit Do
 LabelProgress.Caption = Str(Result&) & " %"
 LabelProgress.Refresh
Loop

RecoveredRecords& = Abs(Result&)

… where SourceFile$ represents a string variable holding the name of the Tsunami file to be
opened for recovery, optionally including a valid path. If you do specify a path, it must be a
complete path, including the drive letter.

… where TargetFile$ represents a string variable holding the name of the text file to receive
the recovered records, optionally including a valid path. If you do specify a path, it must be a
complete path, including the drive letter.

… where PageSize& holds a value from 1 to 8 representing the page size for the Tsunami file
expressed in KBytes… 1=1K, 2=2K, etc. (or a value of –1 if you want Tsunami to determine
the page size for you *).

… where Compress& holds a value of 1 or 0 (Yes or No) to indicate whether or not
compression was used on the records being recovered (or a value of –1 if you want Tsunami
to determine if compression was used *).

* Note: Tsunami can’t determine page size or compression if the header page is damaged.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 39 ‘ trm_Recover
hFile& = PageSize&
DataPtr& = StrPtr(TargetFile$)
DataLen& = Len(TargetFile$)
KeyPtr& = StrPtr(SourceFile$)
KeyLen& = Len(SourceFile$)
KeyNo& = Compress&

Do
 Result& = trm(Op&, hFile&, DataPtr&, DataLen&, KeyPtr&, KeyLen&, KeyNo&)
 If Result& = 0 Then Exit Do
 LabelProgress.Caption = Str(Result&) & " %"
 LabelProgress.Refresh
Loop

RecoveredRecords& = KeyNo&

 67

trm_Recover (39) (continued)

Syntax (continued)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 39 ‘ trm_Recover
Tsu.file = PageSize&
Tsu.dataptr = StrPtr(TargetFile$)
Tsu.datalen = Len(TargetFile$)
Tsu.keyptr = StrPtr(SourceFile$)
Tsu.keylen = Len(SourceFile$)
Tsu.keyno = Compress&

Do
 Result& = trm_udt(Tsu)
 If Result& = 0 Then Exit Do
 LabelProgress.Caption = Str(Result&) & " %"
 LabelProgress.Refresh
Loop

RecoveredRecords& = Tsu.keyno

trm_Recover is one of Tsunami’s three “incremental” functions. Incremental functions perform
a portion of their operation (a minimum of 1%) and then return a value to your application
representing a percentage of completion. Your application then calls the function again to
either continue or abort the operation. You can use the return values to update the operation’s
progress on screen with a text display or with a progress bar of some kind.

During an incremental function, the Tsunami file is locked in exclusive mode (if it isn’t already)
and can’t be accessed by any other thread, application or user until the function completes or
is aborted by the user.

Note: If you’d like to provide the ability to abort a trm_Recover function call, execute it within a

thread and change the SourceFile$ variable to a null string before the operation has
completed. In the pointer-based APIs, set the KeyLen& parameter or Tsu.keylen
element to zero. Tsunami will take these as signals that you want to abort the recover
operation.

Prerequisites

Neither the Tsunami file nor the target file (if it exists) may be open prior to calling this function.

Results

Once the recover operation is finished, the total count of records in the recovery file is returned
in the KeyNo variable. However, in the string-based API, the number of records contained in
the recovery file is returned as a negative value in the Result variable. Use the Abs function to
convert it to a positive number.

 68

trm_Recover (39) (continued)

Results (continued)

The recovered records are output to the target file, overwriting the file if it already exists. Each
record in the target file is preceeded by it’s length, separated from the first character of the
record by a comma. This is done because Tsunami files accept a mixture of fixed length and
variable length records that may also contain binary data, in which case you’ll need to access
your recovered records in binary mode instead of sequentially… you’ll need to know how many
bytes to read for each variable length record in the file. Either way, each recovered record will
be terminated with a carriage return and a line feed. If the records don’t contain binary data,
then the target file should be compatible with most text editors.

If trm_Recover is unsuccessful for some reason, your application will receive a return value of
0, indicating that no records were recovered. In this event, make sure you’re passing valid file
names, that the files are not open, that you have passed the correct page size and that the
compression variable is set properly for the file you’re trying to recover.

Positioning

This function has no affect on positioning information.

This code sample shows how to read records from a Tsunami recovery file in binary mode…

 hFile& = FreeFile

 Err.Clear
 Open "C:\My Data\Customers.out" For Binary Access Read As #hFile&

 If Err.Number Then

 Msg$ = "Error opening file:" + Str(Err.Number)
 ' display message

 Else

 Do

 Get #hFile, 1, Tmp$
 If Tmp$ = "," Then
 Get #hFile&, Val(Length$), Record$

 ' Record$ variable now contains a record

 Get #hFile&, 2, Tmp$ ' Discard the carriage return and line feed
 Length$ = ""
 Else
 Length$ = Length$ & Tmp$
 End If

 Loop While Not Eof(hFile&)

 Close #hFile&

 End If

 69

trm_Result

The trm_Result function is only needed in Tsunami’s string-based API. It’s called subsequent
to any of the trm_Get or trm_Step functions which return strings instead of numeric result
codes. If the string returned by one of these functions is null, call trm_Result immediately to
obtain a numeric result code to explain why a null string was returned.

Syntax

• String-based API

Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1

Not needed in the pointer-based APIs. Pointer-based functions return their own result code.

• Pointer-based API #2

Not needed in the pointer-based APIs. Pointer-based functions return their own result code.

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

trm_Result will return a result code indicating the status of the most recent operation
performed on the designated file by your application. This result code is only available until
another operation is performed by your application on the same file (using the same file
handle) at which time it’s replaced with the result code of the more recent operation.
Therefore, it’s advisable to make a call to trm_Result as soon as your application recognizes
that one of the trm_Get or trm_Step functions returned a null string.

If you call trm_Result to obtain a result code after one of the trm_Get or trm_Step functions
returns a null string and trm_Result returns a result code of 0 (normally meaning success) then
you must have passed an invalid file handle to trm_Result.

Positioning

This function has no affect on positioning information.

 70

trm_SetKeyPath (30)

trm_SetKeyPath allows you to change the key path by which trm_GetNext and trm_GetPrev
traverse the records in a Tsunami file. You can also call trm_SetKeyPath at any time to set
the current key path, regardless of whether or not a current record has been established.

Note: The current key path is also established by any of the trm_Get functions that pass a key
number parameter.

Syntax

• String-based API

Result& = trm_SetKeyPath(hFile&, KeyNo&)

… where hFile& holds a file handle returned by the trm_Open function.

… where KeyNo& holds a valid key path number (1–128) for this file.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 30 ‘ trm_SetKeyPath
KeyNo& = 1

Result& = trm(Op&, hFile&, 0, 0, 0, 0, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 30 ‘ trm_SetKeyPath
Tsu.file = hFile&
Tsu.keyno = 1

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

If successful… trm_SetKeyPath will return a result code of 0.

If unsuccessful… trm_SetKeyPath will return one of these result codes …

 2 I/O error

 3 File not open

 6 Invalid key number

 99 Time-out

 71

trm_SetKeyPath (30) (continued)

Positioning

If a logical current record has been established prior to a trm_SetKeyPath call, that record will
remain the current record. However, the logical next and previous records will change to
correspond with the new key path you designated. trm_SetKeyPath does not establish a new
current record.

 72

trm_StepFirst (33)

The trm_StepFirst function will locate and return the first physical record located in the
designated file, disregarding all key paths.

Syntax

• String-based API

Record$ = trm_StepFirst(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 33 ‘ trm_StepFirst
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 33 ‘ trm_StepFirst
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

If successful… trm_StepFirst will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_StepFirst will return a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

 73

trm_StepFirst (33) (continued)

Results (continued)

If trm_StepFirst returns a null string (because the call was unsuccessful) and a subsequent call
to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_StepFirst function is immediately
established as the current physical record for the designated file and logical positioning
information for the file is cleared.

Subsequent calls to the trm_Delete, trm_GetNext, trm_GetPrev or trm_Update functions will
fail because they require logical positioning. If you’re using the trm_Step functions to traverse
your records by physical position in the file and wish to switch back to moving through the
records via a key path, call the trm_GetPosition function followed by a call to the trm_GetDirect
function… that will establish the physical current record as the logical current record in the
current key path, also establishing a logical next record (if any) and a logical previous record (if
any).

 74

trm_StepLast (34)

The trm_StepLast function will locate and return the last physical record located in the
designated file, disregarding all key paths.

Syntax

• String-based API

Record$ = trm_StepLast(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 34 ‘ trm_StepLast
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 34 ‘ trm_StepLast
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function.

Results

If successful… trm_StepLast will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_StepLast will return a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 7 File corrupt

 9 End of file

 50 Data buffer too small

 99 Time-out

 75

trm_StepLast (34) (continued)

Results (continued)

If trm_StepFirst returns a null string (because the call was unsuccessful) and a subsequent call
to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_StepLast function is immediately
established as the current physical record for the designated file and logical positioning
information for the file is cleared.

Subsequent calls to the trm_Delete, trm_GetNext, trm_GetPrev or trm_Update functions will
fail because they require logical positioning. If you’re using the trm_Step functions to traverse
your records by physical position in the file and wish to switch back to moving through the
records via a key path, call the trm_GetPosition function followed by a call to the trm_GetDirect
function… that will establish the physical current record as the logical current record in the
current key path, also establishing a logical next record (if any) and a logical previous record (if
any).

 76

trm_StepNext (24)

The trm_StepNext function will locate and return the physical record immediately following the
physical current record in the designated file, disregarding all key paths.

Syntax

• String-based API

Record$ = trm_StepNext(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 24 ‘ trm_StepNext
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 24 ‘ trm_StepNext
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function and a current record
(logical or physical) must have been established.

Results

If successful… trm_StepNext will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_StepNext will return a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 7 File corrupt

 9 End of file

 22 Lost record position

 50 Data buffer too small

 77

trm_StepNext (24) (continued)

Results (continued)

 99 Time-out

If trm_StepNext returns a null string (because the call was unsuccessful) and a subsequent
call to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_StepNext function is immediately
established as the current physical record for the designated file and logical positioning
information for the file is cleared.

Subsequent calls to the trm_Delete, trm_GetNext, trm_GetPrev or trm_Update functions will
fail because they require logical positioning. If you’re using the trm_Step functions to traverse
your records by physical position in the file and wish to switch back to moving through the
records via a key path, call the trm_GetPosition function followed by a call to the trm_GetDirect
function… that will establish the physical current record as the logical current record in the
current key path, also establishing a logical next record (if any) and a logical previous record (if
any).

 78

trm_StepPrev (35)

The trm_StepPrev function will locate and return the physical record immediately preceeding
the physical current record in the designated file, disregarding all key paths.

Syntax

• String-based API

Record$ = trm_StepPrev(hFile&)
Result& = trm_Result(hFile&)

… where hFile& holds a file handle returned by the trm_Open function.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 35 ‘ trm_StepPrev
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 35 ‘ trm_StepPrev
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function and a current record
(logical or physical) must have been established.

Results

If successful… trm_StepPrev will return a record to be stored in a string variable or UDT.

If unsuccessful… trm_StepPrev will return a null string and one of the following result codes.
In the string-based API, a subsequent call to trm_Result is required to obtain the result code.

 2 I/O error

 3 File not open

 7 File corrupt

 9 End of file

 22 Lost record position

 50 Data buffer too small

 79

trm_StepPrev (35) (continued)

Results (continued)

 99 Time-out

If trm_StepPrev returns a null string (because the call was unsuccessful) and a subsequent
call to trm_Result returns a result code of 0, then the file handle you passed must have been
invalid.

Positioning

Any record retrieved by a successful call to the trm_StepPrev function is immediately
established as the current physical record for the designated file and logical positioning
information for the file is cleared.

Subsequent calls to the trm_Delete, trm_GetNext, trm_GetPrev or trm_Update functions will
fail because they require logical positioning. If you’re using the trm_Step functions to traverse
your records by physical position in the file and wish to switch back to moving through the
records via a key path, call the trm_GetPosition function followed by a call to the trm_GetDirect
function… that will establish the physical current record as the logical current record in the
current key path, also establishing a logical next record (if any) and a logical previous record (if
any).

 80

trm_TimeOut (31)

The trm_TimeOut function allows you to modify Tsunami’s internal time-out limit for locked
files. When you try to access a locked file, Tsunami will normally attempt your request for 2
seconds (2000 milliseconds) before returning a time-out result code (99) to your application.
You can use the trm_TimeOut function at any time within your application, as many times as
you like, to alter the internal time-out limit. Whenever Tsunami is started, the time-out limit is
set to it’s 2 second default.

Syntax

• String-based API

Result& = trm_TimeOut(Limit&)

… where Limit& holds a value from 1000 (1 second) to 60000 (60 seconds). Any value
outside of that range will be adjusted to a value within the 1 to 60 second requirement.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 31 ‘ trm_TimeOut
KeyNo& = Limit&

Result& = trm(Op&, 0, 0, 0, 0, 0, KeyNo&)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 31 ‘ trm_TimeOut
Tsu.keyno = Limit&

Result& = trm_udt(Tsu)

Prerequisites

There are no prerequisites for this function call.

Results

trm_TimeOut returns a long integer value representing the time-out limit that was actually set
(in the event your request was outside the acceptable range).

Positioning

This function has no affect on positioning information.

 81

trm_Update (3)

The trm_Update function will insert the supplied record in place of the logical current record in
the designated file, updating all related keys.

Syntax

• String-based API

Result& = trm_Update(hFile&, Record$)

… where hFile& holds a file handle returned by the trm_Open function.

… where Record$ represents a string variable holding the record to be inserted in the file in
place of the logical current record.

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 3 ‘ trm_Update
DataPtr& = StrPtr(Record$)
DataLen& = Len(Record$)

Result& = trm(Op&, hFile&, DataPtr&, DataLen&, 0, 0, 0)

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 3 ‘ trm_Update
Tsu.file = hFile&
Tsu.dataptr = StrPtr(Record$)
Tsu.datalen = Len(Record$)

Result& = trm_udt(Tsu)

Prerequisites

The designated file must have been opened by the trm_Open function, a logical current record
must be established and the Record$ variable must hold a string long enough to satisfy the
key extraction definitions for this file.

Results

If successful… trm_Update will insert the record and it’s keys in the file in place of the logical
current record, returning a result code of 0.

If unsuccessful… trm_Update will return one of these result codes …

 2 I/O error

 3 File not open

 5 Duplicate key

 82

trm_Update (3) (continued)

Results (continued)

 7 File corrupt

 8 No current position

 20 Invalid record length

 22 Lost record position

 46 Access to file denied

 99 Time-out

Positioning

Any record successfully updated in a Tsunami file by the trm_Update function is immediately
established as the current record for that file (logical and physical). The logical next and
previous record pointers are adjusted based on any changes made in the updated record that
might have modified it’s keys.

 83

trm_Version (26)

trm_Version returns Tsunami’s major and minor version numbers as the high and low words of
a long integer.

Syntax

• String-based API

Version& = trm_Version

• Pointer-based API #1 (not for use with Visual Basic) - INFORMATIONAL ONLY

Op& = 26 ‘ trm_Version

Result& = trm(Op&, 0, 0, 0, 0, 0, KeyNo&)

Version& = KeyNo&

• Pointer-based API #2 (not for use with Visual Basic) - INFORMATIONAL ONLY

Tsu.op = 26 ‘ trm_Version

Result& = trm_udt(Tsu)

Version& = Tsu.keyno

Prerequisites

There are no prerequisites for this function call.

Results

trm_Version returns a long integer holding Tsunami’s major and minor version numbers in it’s
high and low words. Those version numbers can be obtained as follows…

Major% = Version& / 256 / 256
Minor% = Version& Mod 256

You can also use the following code to avoid the use of a long integer…

Major% = trm_Version / 256 / 256
Minor% = trm_Version Mod 256

Positioning

This function has no affect on positioning information.

 84

APPENDIX “A”

License Agreement

No one is allowed to use the Tsunami Record Manager (herein referred to as the Software)
without reading this entire page. The Software shall be construed to include the following
computer files… TRM.DLL and the complete contents of this document, TRM_VB.PDF…
whether in printed or electronic form. The Software is owned by Advantage Systems (herein
known as the Author) and remains the copyrighted intellectual property of the Author.

The Author hereby grants you a non-exclusive license to use the Software for development of
personal or commercial software applications. You are granted the right to distribute the
computer file named TRM.DLL (and TRM_VB.DLL) with those applications, but no other
computer files or documentation included with the Software may be distributed by you,
whether for free or for compensation of any sort.

You are not permitted to distribute the TRM.DLL file as part of a development product, but only
as a support DLL (Dynamic Link Library) for software applications developed by you that use
the TRM.DLL file. You may not charge any party for use of the TRM.DLL file, but it may be
distributed with software applications that you receive compensation for. You may not claim
copyright to nor suggest any degree of ownership rights in the Software when included with
any applications produced and/or distributed by you.

The Software may not be reverse engineered nor modifed in any way.

Disclaimer

The Software is provided on an “as is” basis and the Author disclaims all warranties of any
kind, either express or implied, including but not limited to the implied warranties of
merchantability or fitness for a particular purpose. The Author shall not be held liable to you
nor to any user of software applications produced or distributed by you, for damages of any
kind regardless of the circumstances.

 • BY USING OR DISTRIBUTING THE SOFTWARE, YOU AGREE THAT YOU DO SO AT YOUR OWN RISK •

The Author offers no warranty or guarantee, nor makes any representations regarding the use
of or the results of using the Software as to reliability, accuracy or uninterrupted use. All
warranties not stated herein are expressly disclaimed by the Author. Written or oral
information provided by the Author or any other party shall not modify the foregoing discla imer
nor create warranties of any kind.

Some jurisdictions do not allow the exclusion of implied warranties or limitations or exclusion of
liability for incidental or consequential damages, so the above exclusions and/or limitations
may not apply to you.

The Software is protected by United States copyright laws and all applicable international
treaty provisions.

 85

APPENDIX “B”

Syntax Reference – String-based API

Result& = trm_Accelerate(hFile&, CacheSize&)

Result& = trm_Close(hFile&)

Result& = trm_CloseAll

Total& = trm_Count(hFile&)

Result& = trm_Create(File$, FileDef$, OverWrite&)

KeyPos& = trm_CurrKeyPos(hFile&)

Result& = trm_Delete(hFile&)

Result& = trm_FileIsOpen(hFile&)

FSize& = trm_FileSize(hFile&)

Result& = trm_Flush

Record$ = trm_GetByKeyPos(hFile&, KeyPos&)
Result& = trm_Result(hFile&)

Record$ = trm_GetDirect(hFile&, RecPtr$)
Result& = trm_Result(hFile&)

Record$ = trm_GetEqual(hFile&, Key&, KeyVal$)
Result& = trm_Result(hFile&)

Record$ = trm_GetEqualOrGreater(hFile&, Key&, KeyVal$)
Result& = trm_Result(hFile&)

Record$ = trm_GetEqualOrLess(hFile&, Key&, KeyVal$)
Result& = trm_Result(hFile&)

FileDef$ = trm_GetFileDef(hFile&)
Result& = trm_Result(hFile&)

FileVer$ = trm_GetFileVer(hFile&)
Result& = trm_Result(hFile&)

Record$ = trm_GetFirst(hFile&, Key&)
Result& = trm_Result(hFile&)

Record$ = trm_GetGreater(hFile&, Key&, KeyVal$)
Result& = trm_Result(hFile&)

Record$ = trm_GetLast(hFile&, Key&)
Result& = trm_Result(hFile&)

Record$ = trm_GetLess(hFile&, Key&, KeyVal$)
Result& = trm_Result(hFile&)

 86

Syntax Reference – String-based API (continued)

Record$ = trm_GetNext(hFile&)
Result& = trm_Result(hFile&)

RecPtr$ = trm_GetPosition(hFile&, 0)
Result& = trm_Result(hFile&)

Record$ = trm_GetPrev(hFile&)
Result& = trm_Result(hFile&)

Result& = trm_Insert(hFile&, Record$)

Result& = trm_Integrity(hFile&)

hFile& = trm_Open(File$, MultiUser&)

Result& = trm_Rebuild(File$, SaveFile$, FileDef$)

Result& = trm_Recover(SourceFile$, TargetFile$, Page&, Comp&)

Result& = trm_Result(hFile&)

Result& = trm_SetKeyPath(hFile&, Key&)

Record$ = trm_StepFirst(hFile&)
Result& = trm_Result(hFile&)

Record$ = trm_StepLast(hFile&)
Result& = trm_Result(hFile&)

Record$ = trm_StepNext(hFile&)
Result& = trm_Result(hFile&)

Record$ = trm_StepPrev(hFile&)
Result& = trm_Result(hFile&)

Result& = trm_TimeOut(Limit&)

Result& = trm_Update(hFile&, Record$)

Version& = trm_Version

NOTE

The following only applies to Tsunami’s string-based API…

All of the trm_Get and trm_Step functions listed above return string values, but they can also
provide a numeric result code if you immediately call trm_Result, passing the same file handle
as a parameter. You aren’t required to call trm_Result, but you may want to call it whenever
you receive a null string from one of the trm_Get or trm_Step functions.

 87

APPENDIX “C”

Result Codes

0 Successful

Operation was successful.

1 Not a Tsunami file

A trm_Open operation did not recognize the file as one created by the trm_Create function. If
the file actually was created by the trm_Create function, then the file’s header page must be
damaged and the file needs to be rebuilt or recovered before you can access it again.

This result code is also returned if you attempt to access a Tsunami file using a version of
TRM.DLL that’s older than the version used to create the file.

2 I/O error

An error occurred during a disk read or write operation. Normally, this would indicate some
degree of media or hardware failure and could require a rebuild or recover of the affected file.

3 File not open

The operation failed because the designated file was not open. A successful call to trm_Open
must be executed, which returns a valid “file handle”, before any operations may be performed
on the records in the file. This result code could also be returned if the file handle passed was
0 or wasn’t a valid handle.

4 Key not found

The supplied key value was not found in the designated key path.

5 Duplicate key

During an attempt to insert or update a record, a duplicate key was found in a file where
duplicates are not allowed in one of it’s key paths.

6 Invalid key

The key number parameter passed to a Tsunami function was not valid for the designated file.
The key number must be a number from 1 to the highest key number defined for the
designated file when it was created.

7 File corrupt

Operation failed due to physical corruption in the file. Possible explanations include media or
hardware failure, file scrambling due to fluctuating or impure power levels during write
operations, etc.

8 No current position

An operation was attempted which requires that a current record position (logical or physical)
be established within the file before it can succeed.

9 End of file

An operation attempted to read beyond the logical boundries of a key path in a file or beyond
the physical boundries of the file (end-of-file or start-of-file).

 88

Result Codes (continued)

10 Invalid page size

The first byte of a FileDef$ string used in a call to trm_Create did not contain an ASCII
character in the range of 1 to 8, indicating the desired page size for the new file (expressed in
KBytes… 1=1K, 2=2K, etc).

11 Invalid number of key segments

The third byte of a FileDef$ string used in a call to trm_Create did not contain an ASCII
character in the range of 1 to 128, indicating the number of key segment description blocks
contained in the FileDef$ string. This result code is also returned if the number of key
segments indicated exceeds the maximum allowed for the defined page size (see page 2).

12 Invalid file definition string

The FileDef$ string used in a call to trm_Create was not properly constructed. Check for the
following errors…

� The FileDef$ string was a null string
� The second byte of the FileDef$ string didn’t contain an ASCII character 0, 1, 2 or 3

(used for defining record compression and internal record ID retention preferences)
� The FileDef$ string was not the expected length
� There was an error in one or more key segment definition blocks…

o An assigned key number was not in the range of 1 to 128
o An assigned key number was out of natural sequence
o A gap exists between two assigned key numbers

13 Invalid key segment position

The FileDef$ string used in a call to trm_Create includes a key segment definition block that
defines the segment’s starting position as 0.

14 Invalid key segment length

The FileDef$ string used in a call to trm_Create includes a key segment definition block
defining a segment with a length of 0, or the lengths of all segments making up a single key
exceed the maximum allowed (255 bytes).

This result code will also be returned if a key segment is defined as a binary key segment (by
applying the BINARY_KEY key flag constant) and the key segment’s length is defined as
anything other than 2 bytes (INTEGER) or 4 bytes (LONG INTEGER).

15 Inconsistent key segment definitions

The FileDef$ string used in a call to trm_Create includes key segment definition blocks having
the same key number, but with conflicting “key flags” regarding duplicates or key compression.

This result code will also be returned if you define a multi-segmented key containing a binary
key segment while neglecting to apply the NO_COMPRESSION key flag to one or more non-
binary segments of the key.

 89

Result Codes (continued)

20 Invalid record length

The record that was passed to the trm_Insert function or to the trm_Update function was not
long enough to accommodate the key extraction definitions for the designated file. Any key
segment’s starting position plus it’s length must represent a valid position within the record.

21 Invalid record address

To successfully execute a trm_GetDirect function call, the record pointer passed must be a 12-
byte string that was returned by a successful call to the trm_GetPosition function.

22 Lost record position

Lost record positions are reported when a Tsunami function fails because a record that must
be accessed by the function has been either updated or deleted since it was acquired by your
application. Use trm_GetPosition followed by trm_GetDirect to reload it (if it wasn’t deleted).

30 Access denied

An attempt to open a file failed because it’s already open in single-user (exclusive) mode.

31 File already exists

This result code is returned by trm_Create when the OverWrite& parameter is set to a value of
0 and the file you want to create already exists.

32 No more file handles

An attempt to open a file failed due to a shortage of file handles being made available to your
application by Windows.

33 Max files open

An attempt to open a file has failed because TRM.DLL has reached it’s internal limit on open
files (255).

40 Accelerated access denied

The Tsunami file that you tried to accelerate is not open in single-user mode or there are
already 16 files being accessed in accelerated mode.

41 Acceleration cache error

An error occurred while trying to allocate memory for the acceleration cache.

46 Access to file denied

An attempt to insert, update or delete a record failed because the file was opened in multi-
user, read-only mode.

50 Data buffer too small

When using either of Tsunami’s two pointer -based APIs, many functions require you to pass a
data buffer length as a parameter. If you’re attempting to retrieve a record that’s larger than
the data buffer length that you specified, you’ll receive this result code. When this happens, a
record will not be returned. However, the data buffer pointer and data buffer length
parameters will then return the memory location and length of the complete record so you can

 90

Result Codes (continued)

retrieve it directly without making another call to Tsunami.

99 Time-out

The Tsunami file that you tried to open is currently in use in single-user, exclusive mode… try
again. If this result code persists, another thread, application or user who accessed the file in
either single-user or multi-user mode may have locked up, leaving the file inaccessible to
others until a system reset frees it.

Special Note regarding result codes returned by the following five functions…

 trm_Count
 trm_CurrKeyPos
 trm_FileSize
 trm_Integrity
 trm_Open

In the string-based API, these five functions return the following positive numeric values in the Result variable
when they are successful ...

• trm_Count returns 0 or greater, reflecting the number of records in the designated file.

• trm_CurrKeyPos returns 1 or greater, reflecting the approximate position of the logical current record in the
 current key path of the designated file.

• trm_FileSize returns 3 or greater, reflecting the size of the designated file in KBytes.

• trm_Integrity returns an incremental progress counter (1 to 100) as it moves through the file being checked, and
 ultimately returns a value of 0 once the file has been successfully c hecked and no errors were encountered.

• trm_Open returns 1 to 255 as a file handle to be used from that point on to access the file that was just opened.

These five functions will also return a result code when unsuccessful. Result codes are
normally positive numbers, but in the case of these five functions the result codes are returned
as negative numbers so as not to confuse the result code with a return value.

 91

APPENDIX “D”

TSUNAMI Tips

• DEFINING KEYS

When designing your data files, you should only define keys (indexes) that are really
necessary for routine daily access. Developers often define far more keys than they need
because they believe a key should be defined for every possible report or access scenario
that will arise. Defining keys for use in reports that are run on a frequent basis will definitely
save report generation time, but for those reports that are generated infrequently, using a
general access key with a record selection routine will normally be more than adequate.

Overloading any data file with seldom used keys doesn’t harm anything, but it will most
certainly slow down all record insertions, updates and deletions.

• PAGE SIZE SELECTION

When creating a Tsunami file, always try to use a small page size (1K or 2K) if it will
comfortably hold the average sized record to be stored in the file. If you have a sampling of
the records that will be stored in the file, it may be beneficial to test a few different page sizes
to see which results in the best combination of efficient storage (file size) and performance
(access speeds). The impact of page size on access speeds is most evident when reading
and writing records across a network connection.

• RECORD STRUCTURE / COMPRESSION RESULTS

If you choose to implement Tsunami’s record compression feature for a file, you can improve
the compression ratio achieved by Tsunami by structuring your records so all of the fields that
are most likely to be filled with blank characters are situated contiguously in the record. Any
contiguous run of 4 or more repeating characters (up to 255) is converted to a 3-byte code that
represents a “compression block”. For example, a contiguous run of 500 blanks would be
represented by 2 compression blocks (or 6 bytes).

Such record structuring is definitely not required for Tsunami to perform well, but it does
produce smaller compressed records for those situations where file size is of major concern to
an application.

• READING TSUNAMI FILES

When writing an application that uses the Tsunami Record Manager, you will often need to
traverse a complete record set (file) from beginning to end or from end to beginning. Tsunami
gives you two ways to do this… logically or physically.

Moving logically along a key path from the beginning of a Tsunami fil e to it’s end requires the
use of the trm_GetFirst function followed by repeated calls to trm_GetNext until result code 9
(End of file) is received. To move logically from the end of a Tsunami file to it’s beginning, use
the trm_GetLast function followed by repeated calls to trm_GetPrev.

 92

TSUNAMI Tips (continued)

Moving physically from the beginning of a Tsunami file to it’s end is accomplished by calling
the trm_StepFirst function followed by repeated calls to trm_StepNext. To move physically
from the end of a Tsunami file to it’s beginning, use the trm_StepLast function followed by
repeated calls to trm_StepPrev.

There are advantages to both methods. Using the trm_Step functions to move through a file
physically is often measurably faster than moving logically by key path with the trm_Get
functions. However, the records will not be retrieved in any particular order when using the
trm_Step functions and logical positioning is not established. Therefore, you can’t use the
trm_Step functions to move through a file for the purpose of deleting or updating records as
you go… the trm_Delete and trm_Update functions require a logical current record position.

However, traversing the file with the trm_Step functions could be used for such a purpose if all
the deleting and/or updating operations take place after reading the entire file. Simply use the
trm_GetPosition function to receive a 12-byte pointer for each record you select for deletion or
updating and store those record pointers in a string array unt il you have “stepped through” the
entire file. You can then use the trm_GetDirect function inside a For/Next or a Do/Loop
statement to load and process each of the selected records.

• RIGHT JUSTIFIED TEXT KEY VALUES

All keys in a Tsunami file are extracted from the records you pass to TRM.DLL in trm_Insert
and trm_Update function calls, and are therefore always strings. Comparisons made on
strings are performed from left to right and are quite simple when dealing with left justified key
values, such as a customer name or an inventory item number. However, when key values
contain right justified text (such as a dollar amount in an “account balance” field) you may need
to perform extra steps to ensure proper sorting.

When you convert numeric data to string format (using STR$) you should always be sure to
right justify the resulting text within it’s field length in the record, since left justified strings of
numbers will most certainly lead to improper sorting. In most cases, right justifying strings of
numbers is all it takes to provide for proper sorting, but that alone may not be enough to
guarantee accuracy. You may also run into situations where a string of numbers could
represent a negative value and will need special handling…

For example, take these two key values (8 characters long, right justified text)…

 “ -100.00”
 “ 100.00”

It’s obvious to even the most casual observer that the key representing the negative number
would be lower and should come before the other in sorted order. However, since these are
strings that are compared byte-by-byte from left to right, it’s a different story. Starting at the
left, the first byte of these two strings match, but the second bytes differ and a blank space is
considered lower than a negative sign (by ASCII code). For this reason, the positive number
would be seen as lower than the negative number and would produce improperly sorted key
values.

 93

TSUNAMI Tips (continued)

To resolve this issue, simply include a function in your source code that converts “leading”
blank spaces in a string to zeros. Something like this example…

Function ZeroPad(A As String) As String

 Temp& = 1
 Do While Mid(A, Temp&, 1) = Chr(32)
 Mid(A, Temp&) = “0”
 Temp& = Temp& + 1
 Loop
 ZeroPad = A

End Function

Using this function on the two string examples shown above would return the following strings
to be placed in their proper positions within their respective records…

 “0-100.00”
 “00100.00”

This way, when Tsunami extracts these key segments, they will sort properly since the ASCII
code for a negative sign is lower than the ASCII code for a zero.

In summary, any non-binary key segment in a record that represents a numeric value should
have it’s text right justified within it’s field length, and the NO_COMPRESSION key flag should
be used for that key to ensure proper sorting (see page 18). Further, any non-binary key
segment that represents a numeric value that might contain a negative value should be left
padded with zeros to ensure proper sorting.

Note: You will also need a simple function in your source code similar to the one shown above
that would convert the “leading” zeros in a string back to blank spaces for use on such a field
after retrieving a record for display or printing.

• MULTI-THREADED FILE ACCESS

Making Tsunami function calls within threads is certainly allowed, but make sure that you do it
safely and wisely. Don’t automatically assume that you will gain a speed advantage by trying
to read a group of records from a f ile within numerous threads. It might actually take longer to
read the records that way than if you simply access the file from within the main body of your
application.

Using threads would certainly make sense in a case where you are reading a file to p roduce a
report and want to allow your users to do other work while the report is generated within the
thread, or if you want to allow users to produce multiple reports “at the same time” by using
multiple threads. In these situations, threads will enhance your users’ productivity and could
be a wise programming choice.

If you are accessing a Tsunami file from within one or more threads when that file is already
open in the main body of your application, be sure to open the file again (in multi-user mode)
independently within each thread to get a separate file handle for use within each thread.
Close the file within each thread using the file handle received within that thread.

 94

TSUNAMI Tips (continued)

• BATCH-LOADING RECORDS

When “batch-loading” a large number of records into an empty Tsunami file, you can produce
a much smaller file if the records being inserted are supplied to Tsunami in pre-sorted order
(ascending or descending). This allows Tsunami to create more densely populated key pages,
not only making the file smaller, but also reducing the time needed to load the records.

• USER DEFINED TYPES

When a Tsunami function returns a record from a data file (trm_Get and trm_Step functions)
you must receive the record in a string variable. The same applies to records that are passed
to Tsunami as function parameters… you must send a string variable. This is because
Tsunami treats all records as being potentially variable length.

You can, however, use a structured variable (UDT) for records, the contents of which are
moved into a string variable (a buffer, if you will) before passing it to Tsunami, and copied from
the string variable (buffer) back into the UDT when Tsunami returns it. To accomplish this,
follow these steps…

‘ define your UDT
‘ this one is a total of 200 bytes in size

Public Type CustomerType
 AcctNo As Long

 LastName As String * 30
 FirstName As String * 30
 Street As String * 30
 City As String * 26
 St As String * 2
 Zip As String * 10
 Misc As String * 60
 AcctBal As Currency
 End Type

Declare your UDT variable and the string variable you’ll be using as the “buffer” …

 Dim Customer As CustomerType

 Dim Record As String * 200

After assigning values to the UDT elements, insert a record into your Tsunami file as follows …

 tmpFile& = FreeFile
 Open “c:\tempfile” For Random As tmpFile& Len = Len(Customer)
 Put tmpFile&, 1, Customer
 Get tmpFile&, 1, Record
 Close tmpFile&

 Result& = trm_Insert(hCustomer&, Record)

 ‘ check Result&

When retrieving a record from your Tsunami file, you can move the contents of the string
variable into the elements of the UDT variable as follows …

 95

TSUNAMI Tips (continued)

 Record = trm_GetFirst(hCustomer&, 1)
 Result& = trm_Result(hCustomer&)

 If Result& = 0 Then
 tmpFile& = FreeFile
 Open “c:\tempfile” For Random As tmpFile& Len = Len(Customer)
 Put tmpFile&, 1, Record
 Get tmpFile&, 1, Customer
 Close tmpFile&

 Else
 Msg$ = “Error on trm_GetFirst:” + Str(Result&)
 ‘ display message

 End If

The above routines impose very little in the way of a performance penalty, while transparantly
handling the conversion of Visual Basic’s “unpacked” (padded) UDTs to “packed” UDTs. The
conversion of Visual Basic’s Unicode strings to ANSI strings (as required by Tsunami) is also
handled in the above routines. Visual Basic takes care of those issues during it’s Put and Get
file I/O operations.

You may want to place these routines in functions or subs to avoid repetitive code. It’s also
advisable to open your “tempfile” just once at the beginning of your application and close it
only when your application exits to avoid any unnecessary overhead required to open and
close the “tempfile” each time you use these routines… it all depends on your application.

• ACCELERATED ACCESS

Using trm_Accelerate can greatly improve file I/O performance, but there are a few things you
should consider when deciding how to use it. Caching disk I/O provides the most benefit in
operations that modify the file (insert, update and delete operations). You will definitely see
speed improvements using trm_Accelerate in read-only situations, but not as dramatic an
improvement as when you’re modifying a file. Tsunami limits the number of files that may be
accelerated at any one time to 16, so whenever you’ll be accessing more than 16 files at once,
you might want to be selective about which ones you accelerate. For best results, you should
always accelerate the files that will be modified before those that will be accessed for read-
only.

Tsunami’s acceleration cache is an “aggressive” cache, meaning it performs write caching as
well as read caching. Once the requested cache has been filled, aggressive caching ends…
no additional page writes are cached. At that point, a “passive“ cache comes into play to
supplement the aggressive cache. This passive cache takes the form of a bounded “ring
cache”, providing fast access to the file’s 100 most recently accessed k ey pages. It should be
noted that such a ring cache delivers exceptional performance when records are being
inserted in pre-sorted order (near 100% hit rates), while random record inserts can see hit
rates drop to between 40% and 60%.

For the above stated reason, requesting a large cache size for files that are (or will become)
quite large can be beneficial, but aren’t really needed if a large number of records are being
inserted in pre-sorted order. Also, the larger the cache size, the longer it takes to “flush” the
contents of the cache to disk when acceleration is turned off… something your application(s)
may need to take into consideration.

 96

Contact Information

The Tsunami Record Manager was written by Advantage Systems for it’s own use as a
development tool for commercial applications. It has been released at no charge to all
interested Win32 developers, subject to the conditions outlined in the License Agreement and
Disclaimer in Appendix “A” of this document.

Technical support for Tsunami is only offered to members of the Tsunami Users Group.
Membership in the Users Group is not required to use the free version of Tsunami, but is
required if you want access to support services, the Users Forum discussion boards, free
utilities for Tsunami and any future Pro Editions of Tsunami. Please visit our web site often for
complete details...

www.TRM-UG.com

Copyright © 2002 Advantage Systems. All rights reserved.

 Doc: TRM02 Visual Basic is a registered trademark of Microsoft Corp.
Date: 2002-11-04 Windows is a registered trademark of Microsoft Corp.

