TCP Deux

Developer Documentation
v1.1.1

©1998-2003 Deep Sky Technologies, Inc. All Rights Reserved.
Published and Distributed Worldwide by Deep Sky Technologies, Inc.

Deep Sky Technologies, Inc.
P.O. Box 6897

Vero Beach, FL 32961-6897
772.794.9494

IB6P SKY

TECHNOQLOGIES

http://www.deepskytech.com/

Software License and Limited Warranty

Please read this license carefully before using the software. By using
the software, you agree to become bound by the terms of this agreement,
which includes the software license and warranty disclaimer (collec-
tively referred to herein as the "agreement"). This agreement consti-
tutes the complete agreement between you and Deep Sky Technologies,
Inc. If you do not agree to the terms of this agreement, do not use the
software and promptly destroy all copies in your possession, physical
and electronically.

1. Ownership of Software: The enclosed manual and computer pro-
grams ("Software") were developed and are copyrighted by Deep Sky
Technologies, Inc. ("DSTi") and are licensed, not sold, to you by DSTi for
use under the following terms, and DSTi reserves any rights not
expressly granted to you. DSTi retains ownership of all copies of the
Software itself. Neither the manual nor the Software may be copied in
whole or in part except as explicitly stated below.

2. License: DSTi, as Licensor, grants to you, the Licensee, a non-
exclusive, non-transferable right to use this Software subject to the
terms of the license as described below:

a. You may make backup copies of the Software for your use provided
they bear the DSTi copyright notice.

b. You may use this Software in an unlimited number of custom or
commercial databases or applications created by the original lic-
ensee. No additional product license or royalty is required.

3. Restrictions: You may not distribute copies of the Software to
others (except as an integral part of a database or application within
the terms of this License) or electronically transfer the Software from
one computer to another over a network. You may distribute copies of
the Software as an integral part of a development shell or non-compiled
commercial database as long as the DSTi copyright notices and docu-
mentation remain intact with the distribution. The Software contains
trade secrets and to protect them you may not decompile, reverse engi-
neer, disassemble, or otherwise reduce the Software to a human per-
ceivable form. You may not modify, adapt, translate, rent, lease, loan or
resell for profit the software or any part thereof.

4. Termination: This license is effective until terminated. This
license will terminate immediately without notice from DSTi if you fail
to comply with any of its provisions. Upon termination you must

http://www.deepskytech.com/

destroy the Software and all copies thereof, and you may terminate this
license at any time by doing so.

5. Update Policy: DSTi may create, from time to time, updated ver-
sions of the Software. At its option, DSTi will make such updates avail-
able to the Licensee.

6. Warranty Disclaimer: The software is provided "as is" without
warranty of any kind, either express or implied , including, but not lim-
ited to, the implied warranties of merchantability and fitness for a par-
ticular purpose. DSTi does not warrant, guarantee, or make any
representations regarding the use, or the results of the use, of the soft-
ware or written materials in the terms of correctness, accuracy, reli-
ability, currentness or otherwise. The entire risk as to the results and
performance of the software is assumed by the Licensee. If the soft-
ware or written materials are defective you, and not DSTi or it's deal-
ers, distributors, agents, or employees, assume the entire cost of all
necessary servicing, repair or correction. No oral or written informa-
tion or advice given by DSTi, it's dealers, distributors, agents, or
employees shall create a warranty or in any way increase the scope of
this warranty, and you may not rely on such information or advice. This
warranty gives you specific legal rights. You may have other rights,
which vary from state to state.

7. Governing Law: This agreement shall be governed by the laws of
the State of Florida.

http://www.deepskytech.com/

Copyrights and Trademarks

All trade names referenced in this document are the trademark or regis-
tered trademark of their respective holder.

BASh, Bash Pro, TCP Deux, TCP Deux Pro, SMTP Deux, POP3 Client Deux,
FTP Client Deux, HTTP Client Deux, eTrans, TCP Server Deux, HTTP

Server Deux, and HTTP Log Deux are copyright Deep Sky Technologies,
Inc.

4th Dimension, ACI, ACI US, 4D Compiler, 4D, 4D Server, 4D Client, and
4D Insider are trademarks of 4D, Inc.

4D Internet Commands plugin provided courtesy, and with permission, of
4D, Inc.

Macintosh and MacOS are trademarks of Apple Computer, Inc.

Windows is a trademark of Microsoft Corporation.

http://www.deepskytech.com/

Preface

The TCP Deux component is designed to work in conjunction with many
other components. Specifically, the TCP Deux component requires that
the BASh component, available for free from DSTi, be installed already
in your database structure file.

Make certain that you view the compatibility matrix for components
available to make certain you are using compatible versions of the dif-
ferent components required. There is a compatibility matrix available
in this manual; the most recent compatibility matrix is available on the
DSTi web site.

Other optional components which can be used with TCP Deux include
SMTP Client Deux, POP3 Client Deux, FTP Client Deux and HTTP Client
Deux, among others. Details and documentation for these components
are provided separately.

http://www.deepskytech.com/

Acknowledgements

The creation of the TCP Deux component is not directly attributable to
any single person. Particular pieces of functionality within the TCP
Deux component may be from the direct knowledge and experience of
certain developers, but the overall concept and construction of the TCP
Deux component has come from all of the developers at Deep Sky Tech-
nologies, Inc.

Mr. James A. Crate's experience in many different programming environ-
ments has provided refreshing insights into the overall structure and
organization of the core routines at DSTi, the same core routines which
are available in the BASh and TCP Deux components.

Finally, 1, Steven G. Willis, might have had something to do with the cre-
ation of the TCP Deux component...

http://www.deepskytech.com/

Features

TCP Deux is a 4th Dimension component which provides cross-platform
TCP wrappers for different TCP plugins available for 4th Dimension.
The plugins supported within TCP Deux include 4D Internet Commands
v6.7.X, 4D Internet Commands v6.8.x, 4D Internet Commands v7.0.x (4D IC
2003), Internet ToolKit v2.0.x, and Internet ToolKit v2.5.x.

With the release of TCP Deux v1.1.0 and above, compatibility with 4D
v6.8.x is now available. TCP Deux v1.1.1 and above added support for 4D
v7.0.x (4D 2003). Since 4D v6.8.x and 4D v7.0.x (4D 2003) is a full carbon
version of 4th Dimension, support for Internet ToolKit v2.0.x is no
longer an option. TCP Deux will automatically check which version of 4D
is running and will allow only compatible versions of the listed plugins
to be used with the individual versions of 4th Dimension.

With the TCP Deux component, a 4th Dimension developer can code TCP
level routines without worrying about which particular plugin is going
to be used. TCP Deux provides a very simple upgrade path for developers
to write one set of code. With TCP Deux, a 4D developer can begin by
using the free 4D Internet Commands for all TCP communications and
upgrade to the commercial Internet ToolKit plugin when the needs
arises, all without changing a single line of code.

Separate 4D components for higher level TCP protocols are available
from Deep Sky Technologies, Inc. This includes components for SMTP,
POP3, FTP client, HTTP/HTTPS client, and more. Of course, we are
always looking for suggestions about what other high level TCP proto-
cols you need, so we can write the components to handle those as well!

http://www.deepskytech.com/

System Requirements

The TCP Deux component is compatible with both Macintosh and Win-
dows installations of 4th Dimension.

Since it is a component, it does require at least version 6.7 of 4th
Dimension or above, including 4D Insider v6.7 or above for installation.
With the release of TCP Deux v1.1.0 and above, compatibility with 4D
v6.8.x is now supported. This includes running TCP Deux on MacOS 8/9,
MacOS X, and Windows 98/2000/NT/XP. TCP Deux v1.1.1 and above
includes support for 4D v7.0.x (4D 2003) and continues support of all
available platforms for deployment of 4D with TCP Deux.

Other than the normal hardware and software requirements for your
version of 4th Dimension, there are no other minimum requirements for
proper use of this software.

http://www.deepskytech.com/

Support

Support is provided for TCP Deux component free of charge for all cur-
rently licensed users. Included support services provided for all cur-
rently licensed users encompasses all of the online support services
available through the DSTi web site (email, FAQ, messaging, etc.). Check
the DSTi web site for current direct support options available; we are
always working to offer more resources for your needs.

Contact information, including email address(es), phone number(s), and
a Contact Us request form, for Deep Sky Technologies, Inc., can be found
on the DSTi web site located at http://www.deepskytech.com/.

If there are terms or conventions which you find difficult to understand
in relation to the TCP Deux component or TCP protocols and servers in
general, feel free to contact Deep Sky Technologies, Inc., support. We
will be more than happy to help you in any way we reasonably can. And,
only through your questions do we know what subjects to include in
future versions of this manual.

http://www.deepskytech.com/
http://www.deepskytech.com/

Components

A component groups various 4D objects (tables, project methods, forms,
menu bars, variables, etc.) representing one or more additional func-
tions. Developing a 4D component providing electronic mail functional-
ity is one such example. A component is autonomous and must be able to
be installed in any 4D structure.

Components are defined, generated, and installed with the help of 4D
Insider. The component definition is based on the cross referencing
analysis performed by 4D Insider (target objects and source objects).

Unlike libraries and groups, components embed the idea of security of
objects that they compose. During the development phase of the compo-
nent, each object is attributed an access type, "Public", "Protected” or
"Private". This attribute determines whether each object will be visi-
ble or modifiable in 4th Dimension and in 4D Insider once the component
is installed within a 4D database.

Installing TCP Deux

Installing TCP Deux or updating an existing version of TCP Deux within a
4D database is performed using 4D Insider. The activity primarily con-
sists of installing the TCP Deux component in a database structure
opened with 4D Insider (installing the TCP Deux component in a library
is not supported at this time).

4D Insider will manage possible conflict issues within the installation
and will inform you as they are detected. Though, with the naming con-
ventions used within the TCP Deux component and the limited number of
object names, conflicts should be very rare.

To install or update the TCP Deux component, follow these very simple
steps:

Open the uncompiled structure that you wish to install
TCP Deux into using 4D Insider.

Choose the "Install/Update..."
nents" menu.

command in the "Compo-

A standard open file dialog box will appear.

Select the TCP Deux component file and click on the
"Open" button.

http://www.deepskytech.com/

4D Insider parses the TCP Deux component and prepares to
integrate it with your open database. 4D Insider will detect
if the operation is an installation or an update of the TCP
Deux component.

In the event of a new installation, all TCP Deux objects are
installed.

In the event of an update, 4D Insider compares the version
numbers of both the currently installing TCP Deux component
and the already installed TCP Deux component. If the date of
the "new" component is older than the already installed com-
ponent, a dialog box will alert you, allowing you to then
"Continue" or "Cancel" the update.

4D Insider replaces old objects with newer objects within
the TCP Deux component and adds new objects from the new
TCP Deux component. 4D Insider takes into account "public”
objects having been modified by you (e.g. " _ERROR" methods)
and will prompt you to either save or replace them. If any
other conflicts arise from the installation or update of the
TCP Deux component, 4D Insider will prompt you with an
appropriate dialog box.

Save the database in 4D Insider.

Place a copy of the Affix TCP Deux document in the 4DX
folder.

The Affix TCP Deux document contains essential data and
resources for many of the methods within the TCP Deux com-
ponent. For many of the methods within the TCP Deux compo-
nent to function properly, the Affix TCP Deux document must
be in the 4DX folder for the current structure.

On Macintosh, the Affix TCP Deux document is entitled
Affix_TCP_Deux.4DX (under 4D v6.8.x and 4D v7.0.x, there
is now a carbonized version entitled Affix_TCP_Deux.4CX)
and is located in the Mac4DX directory in the TCP Deux com-
ponent's archive. The document should be copied into the
Mac4DX folder of your current structure. If the TCP Deux
component is going to be used in all of your 4D projects, the
Affix TCP Deux document can instead be placed within the
Mac4DX folder within the 4D folder of your system.

http://www.deepskytech.com/

On Windows, the Affix TCP Deux document is actually two
documents: Affix TCP_Deux.4DX and
Affix_TCP_Deux.RSR . These two document correspond to
the data fork and the resource fork of the Affix TCP Deux
document used on Macintosh. These documents are located in
the Win4DX directory in the TCP Deux component's archive.
These documents should be copied into the Win4DX folder of
your current structure. If the TCP Deux component is going to
be used in all of your 4D projects, the Affix TCP Deux docu-
ment can instead be placed within the Win4DX folder within
the 4D folder of your system.

For client/server installations in cross-platform environ-
ments, both the Macintosh and Windows versions of the Affix
TCP Deux document should be installed.

Place copies of the TCP connectivity plugins in the 4DX
folder.

Since the TCP Deux component is compatible with both 4D
Internet Commands and Internet ToolKit, copies of both of
these plugins must be installed in your 4DX folder(s). But, at
any given installation, only one plugin will be utilized. A
plugin stub has been provided for ITK v2.5.x to reduce the
total software package size which is required.

Please read the sections of this manual dealing with 4D
Internet Commands Plugin and Internet ToolKit Plugin,
below, for more details on exactly which plugin documents
should be installed for your particular installation needs.

Call the method INIT_TCPd early in the On Startup and On
Server Startup database methods.

To initialize the TCP Deux component in your code, place a
call to the method INIT_TCPd early in your On Startup
database method.

Details about the INIT _TCPd method can be found in the
method documentation, below.

The TCP Deux component is now installed/updated in your database and
is listed on the "Components" page of the 4D Explorer.

http://www.deepskytech.com/

Managing Installation Conflicts

On very rare occasions, when the TCP Deux component is installed or
updated in your 4D database, several questions and conflicts may arise.
In the event of an update, 4D Insider will detect that you have modified
one of more "Public" objects in TCP Deux after the initial installation.
Or, one or more objects of the same type and of the same name may
already exist in your database and in the TCP Deux component.

4D Insider detects and solves these conflicts during installation:

Modified public objects (updates only)

In this case, 4D Insider alerts you by a dialog box, allowing
you to choose an update mode:

Replace the object
Replace all objects
Do not replace the object

Stop installation

Name conflicts

In this case, 4D Insider stops the TCP Deux's installation
process, alerts you through a dialog box and saves the list of
objects in conflict. This list is stored as a text file in the
4D database folder.

Naming conflicts between logical objects, such as variables,
are managed by 4D Insider, in a manner that allows database
compilation and avoids conflicts between TCP Deux and other
4D components.

It may be necessary to rename certain objects in your data-
base or in other components in order to be able to install the
TCP Deux.

If any naming conflicts do occur between TCP Deux and other
4D components, please notify Deep Sky Technologies, Inc.,
immediately.

http://www.deepskytech.com/

Affix TCP Deux Document

The Affix TCP Deux document contains essential data and resources for
many of the methods within the TCP Deux component. For many of the
methods within the TCP Deux component to function properly, the Affix
TCP Deux document must be in the 4DX folder for the current structure.
For distributed and installed versions of your 4D projects, the Affix TCP
Deux document must be available in the 4DX folder for the TCP Deux
methods to continue to function properly.

Note: it is best to consider the Affix TCP Deux document another plug-
in within your 4D project. Though there no actual plug-in calls available
within the Affix TCP Deux document, it does contain data and resources
essential to the operation of the TCP Deux methods. The TCP Deux com-
ponent has been designed to find the Affix TCP Deux document correctly
in all environments (any platform, any 4DX folder, single user or cli-
ents/server, etc.). Since the Affix TCP Deux document is configured
similarly to plug-ins, 4D and the TCP Deux component will automati-
cally manage the document for you in all of the possible installations of
a 4D project.

4D Internet Commands Plugin

The 4D Internet Commands plugin is a plugin available from 4D, Inc., and
4D SA for providing network connectivity within 4D based applications.

The 4D Internet Commands plugin (entitled 4D_IC_v673.4DX for 4D
v6.7.xand 4D _IC _v682.4DX for 4D v6.8.x, and 4D_IC_v700mc01.4DXB
for 4D v7.0.x, respectively) is automatically initialized by the TCP Deux
component when initialized. So, there is no need to initialize the TCP
layer from within your code. Basically, this consists of a call to
IT_MacTCPInit which is handled within the TCP Deux component.

The 4D Internet Commands plugins are provided unmodified directly
from 4D, Inc., and 4D SA.

Internet Toolkit Plugin

The TCP Deux component is compatible with both Internet ToolKit v2.0.x
and Internet ToolKit v2.5.x. There are significant differences between
these two version of the ITK plugin. But, the copies of the these plugins

http://www.deepskytech.com/

provided with TCP Deux make almost all of these differences transpar-
ent (the only exception being support for SSL connections).

Depending on which version of ITK your application may support, differ-
ent plugin documents are provided.

Note: if your application will be using 4D Internet Commands for net-
work connectivity, refer to the section for ITK v2.5.x for the correct ITK
stub to install.

ITK v2.0.X

If your application will use ITK v2.0.x for network connectivity (com-
patible with 4D v6.7.x only), install the ITK v2.0.x version of the plugin
contained within the TCP Deux software package. This version is enti-
tled ITKp_v204.4DX.

In this event, no copy of ITK v2.5.x need be installed with your applica-
tion for TCP Deux to function properly. But, make certain that your
application uses the version of the ITK v2.0.x plugin which is included
with the TCP Deux component. Specific modifications have been made to
the ITK v2.0.x plugin within these copies of the plugin to provide com-
piler compatibility within the TCP Deux package.

Note: if your application will be using ITK v2.0.x for network connectiv-
ity, you must still install the 4D Internet Commands plugin for compila-
tion compatibility.

ITK v2.5.X

If your application will use ITK v2.5.x for network connectivity, install
the ITK v2.5.x version of the plugin contained within the TCP Deux soft-
ware package. This version is entitled ITK_v260.4DX.

If your application will use 4D Internet Commands for network connec-
tivity, installation of the ITK plugin stub is required. For simplicity,
the ITK plugin stub is provided in ITK v2.5.x format only. The ITK v2.5.x
plugin stub is entitled ITK_s260.4DX.

Note: if your application will be using ITK v2.0.x for network connectiv-
ity, you must still install the 4D Internet Commands plugin for compila-
tion compatibility.

http://www.deepskytech.com/

4D v6.8.X%

With the availability of 4D v6.8.x, the complete 4th Dimension environ-
ment is now fully carbonized. 4D as a carbonized application allows for
a single set of tools to function on either MacOS X or MacOS v9.x using
CarbonLib.

With the release of 4D v6.8.x, there is now a new plugin architecture
available for third party developers. As well, there are some changes
which have been made in the actually plugin hierarchy and naming con-
ventions. There have also been changes made to the component architec-
ture within the 4D product line. Reading the release notes for 4D v6.8.x
is a great source of information regarding these changes.

TCP Deux is currently available with compatibility for 4D v6.8.x. This
comes in the form of new affix and plugin documents for use with 4D
v6.8.x. The TCP Deux archive contains both 4D v6.7.x and 4D v6.8.x com-
patible versions of the component, affix documents, and plugins.

When updating an existing database from 4D v6.7.x to 4D v6.8.x, we have
found that installed components will no longer update properly. The
first time that a component is updated after upgrading a 4D structure,
the component must first be removed from the structure before install-
ing the new version of the component. We have not seen any problems
with doing this other than the extra step required to remove the compo-
nent using 4D Insider.

It is also important that you install the correct affix and plugin docu-
ments for your environment. Whether you are running under MacOS X or
MacOS 9 is not a factor. Rather, whether you are using 4D v6.7.x or 4D
v6.8.x is the determining factor. Copy the appropriate documents for
your current version of 4D from the component archive for use in your
4D structure. The differences between the 4D v6.7.x and 4D v6.8.x affix
and plugin documents is simple to determine; the names of the docu-
ments compatible with 4D v6.7.x end in “.4DX” and the names of the doc-
uments compatible with 4D v6.8.x end in “.4CX".

4D v7.0.x (4D v2003)

TCP Deux is currently available with compatibility for 4D v7.0.x. This
comes in the form of new affix and plugin documents for use with 4D
v7.0.x. The TCP Deux archive contains 4D v6.7.x, 4D v6.8.x, and 4D v7.0.x
compatible versions of the component, affix documents, and plugins.

http://www.deepskytech.com/

It is also important that you install the correct affix and plugin docu-
ments for your environment. Whether you are running under MacOS X or
MacOS 9 is not a factor. Rather, whether you are using 4D v6.7.x, 4D
v6.8.x, or 4D v7.0.x is the determining factor. Copy the appropriate plu-
gin documents for your current version of 4D from the component
archive for use in your 4D structure.

http://www.deepskytech.com/

Uninstalling TCP Deux

4D Insider allows you to uninstall the TCP Deux component from your 4D
database.

To uninstall TCP Deux from your 4D database:

Using 4D Insider, open your database containing the copy
of TCP Deux to be uninstalled.

In the "Main" listing window, select the TCP Deux compo-
nent.

Consider again how great the TCP Deux component is and
make certain that you will really no longer need it in
your 4D database.
Select the "Uninstall..."”
menu.

command in the "Components”

This command is only active when a component is installed
in the database. A dialog box appears allowing you to con-
firm or cancel the operation. If you uncertain about the pre-
vious step then the cancel option is probably your best choice
at this time.

Click "OK" to validate the operation.

Remove the Affix TCP Deux document from your 4DX
folder.

Remove the internet connectivity plugins from your 4DX
folder if they are no longer needed.

Remove the call to the method INIT_TCPd from your On
Startup and On Server Startup database methods.

All objects from the TCP Deux component are deleted from your 4D data-
base. Obviously, you are now very sad to no longer have the TCP Deux
component in your 4D database. Crying is allowed...

http://www.deepskytech.com/

Updating to TCP Deux v1.1.1

Updating to the latest release of the TCP Deux component is a simple
procedure. Follow the instructions contained in the section “Install-
ing TCP Deux” on page 10 to update the code within the structure.

In particular for TCP Deux, make certain that the latest release of the
Affix TCP Deux document is placed in the 4DX folder.

http://www.deepskytech.com/

TCP and TCP Deux Conventions

Throughout this manual, and all other documentation and supporting
materials, included with the TCP Deux component package, there are
different core knowledge which is essential to know and understand.
With this knowledge, basically concerning the conventions used on TCP
networks and conventions used within the TCP Deux component, you will
be able to more easily and efficiently utilize the functionality available
within this software package.

If there are other terms or conventions which you find difficult to
understand in relation to the TCP Deux component or TCP protocols and
servers in general, feel free to contact Deep Sky Technologies, Inc., sup-
port. We will be more than happy to help you in any way we reasonably
can. And, only through your questions do we know what subjects to
include in future versions of this manual.

http://www.deepskytech.com/

TCPd Streams Stack

The TCPd Streams Stack is an internal mechanism within the TCP Deux
component to keep efficiently keep track of open TCP streams within
4th Dimension. Whenever the routines within the TCP Deux component
are used to open, change, or close a TCP stream, the TCPd Streams Stack
is updated to reflect directly the last known state of all applicable TCP
streams managed by TCP Deux.

The TCPd Streams Stack is accessible within your 4th Dimension code
by using the accessor routines provided within the TCP Deux component.
All of the methods which work directly with the TCPd Streams Stack
can be identified by the trailing "_s" within the name of the routine (e.g.
TCPd_Copy_ StreamStack_s , TCPd_Get_ProcessID_s , etc.).

Many other methods within the TCP Deux component may access or make
use of the TCPd Streams Stack, though that is not the primary function

of such methods. Rather, these other methods within the TCP Deux com-
ponent work to maintain the integrity and accuracy of the TCPd Streams
Stack.

The TCPd Streams Stack is basically just a listing of data about each
TCP stream. For each TCP stream managed by the TCP Deux component,
there is one row in the TCPd Streams Stack. Each row in the TCPd
Streams Stack contains a single field for each of the following pieces
of information:

Field Name Type

Stream Reference Longint
Port (Local) Longint
Protocol Longint
Status Longint
IP Address (Local) Longint
Handler Process ID Longint

The stream reference is the unique identified used to reference each
TCP communications stream available.

The port is the local port which is used for the TCP communications.

The protocol is the coded protocol value which is to be used on the TCP
communications stream. See the section TCPd_Protocols in this man-

http://www.deepskytech.com/

ual for details about the different coded values available for the proto-
cols field.

Status is the TCP stream status. The following is a listing of all of the

possible stream status values:

Status Name Description

0 Closed no connection

2 Listen listening for incoming connection

4 SYN received incoming connection being established

6 SYN sent outgoing connection being established

8 Established connection up

10 FIN Wait 1 connection up; close sent

12 FIN Wait 2 connection up; close sent and acknowledged
14 Close Wait connection up; close received

16 Closing connection up; close issued and received
18 Last ACK connection up; close issued and received
20 Time Wait connection being broken

IP address is the local IP address of the TCP communications stream. A
value of zero (0) within this field indicates that every IP local IP
address on the machine is available for use for the TCP communications
stream, though outgoing connections will use the primary IP address of
the machine in most cases.

Handler process ID is the 4D process which is set to handle the TCP
communications process.

Note: the handler process ID field is provided merely for informational,
and convenience, purposes. There is direct affect this field's value has
on the TCP communications handling.

http://www.deepskytech.com/

Hosts

Host names on a TCP network can refer to a few different formatted
string values. One format for a valid host name is the dotted IP address
of the network device, e.g. "63.175.177.37". Another valid host name
format is the domain name of the network device, e.g. "deep-
skytech.com”.

Both host name formats are valid host names to be used for addressing a
device on a TCP network. Any parameters in the TCP Deux component
which require a host name refer to a host name that fits into either of
these formats.

IP Addresses

Throughout TCP Deux, IP addresses for local and remote hosts are han-
dled as longint values. This provides a convenient and memory efficient
means for handling IP addresses. When an IP address is required for a
specific parameter in a TCP Deux method, it will need to be a longint
value by default.

The BASh component package contains routines to convert IP addresses
between longint values and string values (dotted IP addresses). The
routines CONV_IP_to _Longint and CONV_Longint _to_IP allow for
the conversion of a single value of one type to another.

Following is a listing of sample IP addresses and their corresponding
longint values in 4th Dimension:

Dotted IP Address Longint IP Address
0.0.0.0 0

0.0.0.1 1

0.0.0.2 2

0.0.1.0 256

0.0.1.1 257

1.1.1.1 16843009
127.255.255.255 2147483647
128.0.0.0 -2147483648
128.0.0.1 -2147483647

255.255.255.255 -1

http://www.deepskytech.com/

TCP Deux v1.1.1 Developer Documentation

Dotted IP Address Longint IP Address

63.175.177.37 1068478757

Deep Sky Technologies, Inc.

http://www.deepskytech.com/

24

http://www.deepskytech.com/

Constants

There are a minimal number of custom constants included with the TCP
Deux component package. These constants are grouped into a few conve-
nient constant groups for easier referencing and organization.

Where appropriate, it is highly recommended that the custom constants
included with the TCP Deux component be utitlized within your code;
this will simplify considerably future feature enhancements to the core
code within TCP Deux.

TCPd_Plugin_Types

The TCPd Plugin_Types constants group contains one constant for each
of the supported TCP plugins supported within the TCP Deux component
package. The following is a listing of the constants, and their values,
within the TCPd Plugin_Types constant group:

Constant Value
TCPd_IC_v67x_Plugin 1
TCPd_ITK_v25x_Plugin 2
TCPd_ITK_v20x_Plugin 4
TCPd_IC_v68x_Plugin 8
TCPd_IC_v70x_Plugin 16

These constants are used only when initializing the TCP Deux compo-
nent. The first parameter to the TCP Deux method INIT_TCPd takes one
of these constant values to indicate which TCP plugin is to be used in
the current 4D application for all TCP communications.

TCPd_Protocols

The TCPd Protocols constants group contains different constants for
each commonly used TCP protocol utilized. There are distinct constants
for opening a TCP stream for sending or receiving (client or server,
remote or host, session or listen, etc.).

http://www.deepskytech.com/

The protocol to be used for a specific TCP stream is important to set
correctly. To properly support SSL communications, for instance, when
using Internet Toolkit v2.5.x, setting an improper protocol for a TCP
stream may prevent the SSL encoding to work properly.

The following is a listing the constants, and their values, within the
TCPd Protocols constant group:

Constant Value
TCPd_HTTP_Listen 1
TCPd_HTTP_Session 2
TCPd_SMTP_Listen 3
TCPd_SMTP_Session 4
TCPd_POPS3_Listen 5
TCPd_POP3_Session 6
TCPd_FTP_Listen 7
TCPd_FTP_Session 8
TCPd_DNS_Listen 9
TCPd_DNS_Session 10
TCPd_SMPP_Listen 11
TCPd_SMPP_Session 12
TCPd_HTTPS_Listen 301
TCPd_HTTPS_Session 302
TCPd_other_Listen 601
TCPd_other_Session 602

TCPd_other_SSL_Listen 801
TCPd_other_SSL_Session 802

If the specific protocol which is to used on a TCP communications
stream is not listed in TCPd Protocols constants group already, the
"other" constants are available.

http://www.deepskytech.com/

Code Modules

All of the code within the TCP Deux component is organized into mod-
ules. Each module is designated by a three (3) to five (5) character mod-
ule prefix. All of the module prefixes are used within the name of every
object within the module (methods names, variable names, semaphore
names, etc.). This allows for the easy identification of any object
within the TCP Deux component.

Each module contains a set of methods which can be used throughout
your database once the TCP Deux component is installed. Method names
all begin with the module prefix followed by an underscore ("_") charac-

ters. The remainder of the method name then describes the function of
the method.

http://www.deepskytech.com/

TCPd Module

The TCPd module handles all aspects of the TCP Deux component at this
time.

= ENV_Get_TCPd_HardName_Long
ENV_Get_TCPd_HardName_Long => Long Hard Name

ENV_Get_TCPd_HardName_Long
=> Long Hard Name : Text

Parameter Type Description

Long Hard Name Text Full, hard coded name of TCP Deux
component including versioning
information

The method ENV_Get TCPd_HardName_Long returns the
full, hard coded name of the TCP Deux component, including
versioning information.

Long Hard Name is the full, hard coded name of the TCP Deux
component. As of this release, this will always return the
value “TCP_Deux_v1.1.1".

Note: this method was added as of TCP Deux v1.0.1.

= ENV_Get_TCPd_HardName_Short
ENV_Get TCPd_HardName_Short => Short Hard Name

ENV_Get TCPd_HardName_Short
=> Short Hard Name : Text

Parameter Type Description

Short Hard Name Text Short hard coded name of TCP Deux
component

http://www.deepskytech.com/

The method ENV_Get_TCPd_HardName_Short returns the
short hard coded name of the TCP Deux component.

Short Hard Name is the shortened, hard coded name of the
TCP Deux component. As of this release, this will always
return the value "TCP_Deux".

Note: this method was added as of TCP Deux v1.0.1.

= INIT_TCPd

INIT_TCPd (Plugin to Use ; Macintosh Plugin Serial ; Windows Plugin Serial ; TCP

INIT_TCPd

(

Deux Serial { ; qi Initialize 4D IC Plugin })

-> Plugin to Use : Longint

-> Macintosh Plugin Serial : Text

-> Windows Plugin Serial : Text

-> TCP Deux Serial : Text

{ -> qi Initialize 4D IC Plugin : Longint }

Parameter Type Description

Plugin to Use Longint TCP plugin to use with TCP Deux;

values are available in the TCP Deux
constants group TCPd_Plugin_Types

Macintosh Plugin Serial | Text Macintosh or primary ITK v2.5.x plu-
gin serial
Windows Plugin Serial Text Windows or ITK SSL Server v2.5.x

plugin serial

TCP Deux Serial Text TCP Deux serial

qi Initialize 4D IC Plugin | Longint Code for whether 4D IC plugin

should be initialized when not
default plugin for use by TCPd

The method INIT_TCPd initialises the TCP Deux component.
A single call to this method should be made early in the On
Startup database method in your 4D application. Make cer-
tain the call to this method follows the initialization call to

http://www.deepskytech.com/

the BASh component but before any other calls to the TCP
Deux component package.

Any initialization and serialization of the TCP plugin being
used will be handled directly by this method. So, any exist-
ing calls which exist to initialise and/or serialise, for
instance, ITK can be removed from your 4D application.

Plugin to Use is the coded TCP plugin which is to be used
with the TCP Deux component for all TCP communications.
See the section TCPd Plugin_Types, in this manual, for
details about the different plugin code constants available
for use with this parameter.

Macintosh Plugin Serial is the first plugin serial for the TCP
plugin being used. For ITK v2.0.x, the Macintosh specific
serial should be passed in this parameter. For ITK v2.5.x, the
primary ITK serial should be passed in this parameter. For
IC, this parameter can be left empty.

Windows Plugin Serial is the second plugin serial for the TCP
plugin being used. For ITK v2.0.x, the Windows specific
serial should be passed in this parameter. For ITK v2.5.x, the
ITK SSL Server serial should be passed in this parameter.
For IC, this parameter can be left empty.

TCP Deux Serial is the TCP Deux serial which came with your
purchase of the TCP Deux component. A single TCP Deux
Serial provides for use of the TCP Deux component package
on all platforms. If the TCP Deux package is being tested or
being used in demonstration mode, use an empty serial num-
ber; this will allow for 30 minutes of unlimited use.

qi Initialize 4D IC Plugin is an optional parameter to indicate
whether the 4D Internet Commands plugin should be initial-
ized when it is not the default TCP plugin to be used with
TCP Deux. When any version of ITK is the plugin to be used by
TCP Deux, this parameter can be used to stop the initializa-
tion of the 4D IC plugin. By default, the 4D IC plugin is
always intialized. Passing a value of zero (0) for this param-
eter will force TCP Deux to not initialize the 4D IC plugin.
Passing a value of one (1) for this parameter will force TCP
Deux to always initialze the 4D IC plugin in all situations.

http://www.deepskytech.com/

= RES_Open_TCPd
RES_Open_TCPd => Resource Fork File Reference

RES_Open_TCPd
=> Resource Fork File Reference : Time

Parameter Type Description
Resource Fork File Refer- | Time File reference to resource fork of TCP
ence Deux Affix document

The method RES _Open_TCPd returns the 4D resource docu-
ment reference for the resource fork of the TCP Deux Affix
document. This method will find the Affix document properly
on any platform if it is stored in the 4DX folder next to the
4D structure or if it is stored in the 4D folder in the system.

This method is provided merely for use by the protocol com-
ponent packages that are compatible with the TCP Deux com-
ponent (e.g. SMTP Deux, POP3 Deux, FTP Deux, etc.).

Resource Fork File Reference is the 4D compatible resource
fork document reference of the TCP Deux Affix document.

= TCPd_Close_Stream_NoWait
TCPd_Close_Stream_NoWait (Stream Reference)

TCPd_Close_Stream_NoWait

(
-> Stream Reference : Longint
)
Parameter Type Description
Stream Reference Longint Reference for the TCP stream to close

The method TCPd _Close Stream_NoWait will close an
open TCP stream without waiting for confirmation of the
closing.

http://www.deepskytech.com/

Note: this routine will not release the TCP stream, but only
closes the stream. A call to the method

TCPd Release Stream should follow a call to this method
so that the TCP stream is also released from memory.

Stream Reference is the stream identifier for the stream to
be closed. Itis the same value as returned by the methods
TCPd_Open_Stream and TCPd_Open_Listener .

Note: this method was added as of TCP Deux v1.0.1.

= TCPd_Close_Streams_by_Protocol

TCPd_Close_Streams_by_Protocol (Protocol)

TCPd_Close_Streams_by_Protocol

(

-> Protocol : Longint

)

Parameter

Type

Description

Protocol

Longint

Protocol of match for TCP streams to

close

The method TCPd_Close _Streams_by Protocol will close
all TCP communications streams of a specified protocol. The
protocol value is checked within the TCPd Streams Stack for
every open TCP communications stream and existing streams
using the specified protocol are then closed.

Entries in the TCPd Streams Stack for the TCP communica-
tions streams being closed are removed once each stream has
completed closing.

This method is ideal for use when quitting the 4D applica-
tion.

Protocol is the protocol to check within the TCPd Streams
Stack to indicate which TCP communications streams are to
be closed by this method. Valid values for Protocol include
all of the protocol values in the constants group

TCPd Protocols.

http://www.deepskytech.com/

= TCPd_CloseRelease_Stream
TCPd_CloseRelease_Stream (Stream Reference)

TCPd_CloseRelease_Stream
(

-> Stream Reference : Longint

)

Parameter Type Description
Stream Reference Longint TCP stream reference to close

The method TCPd CloseRelease Stream will close and

release an existing TCP communications stream. No regard
will be given to the current status the TCP communication
stream; the closing of the TCP communications stream is

initiated immediately upon calling this method.

The entry in the TCPd Streams Stack for the TCP communica-
tions stream being closed and released is removed once the
stream has completed closing and been released.

Stream Reference is the TCP communications stream refer-
ence to be closed and released.

Note: as of TCP Deux v1.0.1, this method has been renamed
from TCPd _Close Stream to
TCPd CloseRelease Stream

= TCPd_Copy_s

TCPd_Copy_s (Referenced Stream References ; Referenced Ports ; Referenced Protocols ;
Referenced Statuses ; Referenced IP Addresses ; Referenced Handler Process
IDs)

TCPd_Copy_s
(
-> Referenced Stream References : Pointer
-> Referenced Ports : Pointer

http://www.deepskytech.com/

-> Referenced Protocols : Pointer
-> Referenced Statuses : Pointer

-> Referenced IP Addresses : Pointer
-> Referenced Handler Process IDs : Pointer

Parameter Type Description

Referenced Stream Refer- | Pointer Pointer to longint array to hold TCP

ences stream references

Referenced Ports Pointer Pointer to longint array to hold ports

Referenced Protocols Pointer Pointer to longint array to hold pro-
tocols

Referenced Statuses Pointer Pointer to longint array to hold TCP
stream statuses

Referenced IP Addresses | Pointer Pointer to longint array to hold
remote IP addresses

Referenced Handler Pro- | Pointer Pointer to longint array to hold han-

cess IDs dler process IDs

The method TCPd _Copy s provides a means for a separate

copy of the current state of the TCPd Streams Stack to be
made. It is ideal for providing a TCP streams monitor inter-
face which is updated regularly for programming and debug-
ging purposes.

Referenced Stream References is a pointer to a longint array
to hold the list of stream references in the TCPd Streams
Stack. If this value is a NULL pointer, there will be no list-
ing of the stream references within the TCPd Streams Stack
provided with this method call.

Referenced Ports is a pointer to a longint array to hold the
list of local ports in the TCPd Streams Stack. If this value is
a NULL pointer, there will be no listing of the local ports
within the TCPd Streams Stack provided with this method
call.

Referenced Protocols is a pointer to a longint array to hold
the list of protocols in the TCPd Streams Stack. If this value
is a NULL pointer, there will be no listing of the protocols
within the TCPd Streams Stack provided with this method
call.

http://www.deepskytech.com/

Referenced Statuses is a pointer to a longint array to hold
the list of TCP communications stream statuses in the TCPd
Streams Stack. If this value is a NULL pointer, there will be
no listing of the TCP communications stream statuses within
the TCPd Streams Stack provided with this method call.

Referenced IP Addresses is a pointer to a longint array to
hold the list of local IP addresses in the TCPd Streams Stack.
If this value is a NULL pointer, there will be no listing of the

local IP addresses within the TCPd Streams Stack provided
with this method call.

Referenced Handler Process IDs is a pointer to a longint
array to hold the list of 4D handler process IDs in the TCPd

Streams Stack.

If this value is a NULL pointer, there will be

no listing of the 4D handler process IDs within the TCPd
Streams Stack provided with this method call.

& TCPd_Count_Rows_s

TCPd_Count_Rows_s => Stream Stack Row Count

TCPd_Count_Rows_s

-> Stream Stack Row Count : Longint

Parameter

Type

Description

Stream Stack Row Count

Longint

Number of rows in TCPd Streams
Stack

The method TCPd_Count Rows_s returns the number of
rows currently in the TCPd Streams Stack .

This method is ideal for use when quitting the 4D applica-

tion.

Stream Stack Row Count is the number of rows currently in

the TCPd Streams Stack.

= TCPd_ERROR

http://www.deepskytech.com/

TCPd_ERROR (TCPd Error Number; Special Error Text; Calling Method Name)

TCPd_ERROR
(

-> TCPd Error Number : Longint
-> Special Error Text : Text
-> Calling Method Name : Text

Parameter Type Description

TCPd Error Number Longint Internal TCPd error number

Special Error Text Text Special text to describe the exact error
instance

Calling Method Name Text Name of the method that the error
condition occurred in

The method TCPd _ERROR acts as a callback method from
within the ARR module for errors that may occur. Any time
an error condition is detected within the ARR module, a call
to the method TCPd_ERROR is made.

The internal TCPd Error Number is passed to this method as
the first parameter. The Special Error Text parameter will
contain any relevant error text which is specific to the error
which occurred. It is not uncommon for the Special Error
Text value to be empty. The Calling Method Name will always
contain the name of the TCP Deux method which call the
TCPd _ERROR method.

The TCPd_ERROR method has been implemented as a source

for a consistent interface and/or error tracking mechanism
to be available while using the TCP Deux component. This
method can be modified to suit the needs of the database in
which the TCP Deux component has been installed.

& TCPd_Get_DNSLookup

TCPd_Get_DNSLookup (Domain Name ; Mode) => IP Address

TCPd_Get_DNSLookup
(

http://www.deepskytech.com/

-> Domain Name : Text
-> Mode : Longint

=> [P Address : Longint

Parameter Type Description

Domain Name Text Domain name to lookup

Mode Longint Mode indicator for which IP address
to return (ITK only)

IP Address Longint IP address returned

The method TCPd_Get DNSLookup provides DNS lookup
capabilities to convert a domain name to a valid IP address.
The conversion is done by checking the DNS listing of the
specified domain to retrieve the IP address of the TCP device
serving for the specified domain name.

Domain Name is the valid domain name to be lookup up.

Mode (supported with ITK only) is the coded parameter value
to indicate what action to take for load balanced (LB) DNS
entries for Domain Name. The following table lists the valid
values for the Mode parameter and the functionality associ-
ated with each value:

Mode Action

-1 returns random LB IP address
Oor1l returns first LB IP address

2 returns second LB IP address

3 returns third LB IP address

4 returns fourth LB IP address

IP Address is the IP address retrieved from the DNS for
Domain Name.

= TCPd_Get_DNSLookup_Reverse

TCPd_Get_DNSLookup_Reverse (IP Address ; Mode) => Domain Name

http://www.deepskytech.com/

TCPd_Get_DNSLookup_Reverse

(
-> [P Address : Longint
-> Mode : Longint
)
=> Domain Name : Text
Parameter Type Description
IP Address Longint IP address to lookup
Mode Longint Mode indicator for domain name for-
mat to return
Domain Name Text Domain name returned

The method TCPd_Get DNSLookup_Reverse provides
reverse DNS lookup capabilities to convert an IP address to a
valid domain name. The conversion is done by checking the
DNS listing of the specified IP address to retrieve the
reverse DNS record for the specified IP address.

Refer to the manual accompanying your DNS server for
instructions for enter proper reverse DNS zones and records.

IP Address is the IP address to do a reverse DNS lookup upon.
Mode is the reverse lookup options to use when returning val-

ues for the reverse DNS lookup. The following table lists the
valid values for Mode and the functionality associated with

each value:
Mode Action
0 returns full domain name; if none exist,
dotted IP address is returned
1 returns full domain name; if none exist,
NULL is returned
2 returns dotted IP address;NOTE: no TCP

activity needed with this mode

Domain Name is the reverse DNS full domain name, or dotted
IP address depending on the options specified, for the IP
address specified.

http://www.deepskytech.com/

= TCPd_Get_Index_s

TCPd_Get_Index_s (Stream Reference) => Stream Stack Index

TCPd_Get_Index_s

(
)

-> Stream Reference : Longint

=> Stream Stack Index : Longint

Parameter Type Description

Stream Reference Longint Stream reference to lookup in TCPd
Streams Stack

Stream Stack Index Longint Index into TCPd Streams Stack for
specified stream reference

The method TCPd_Get _Index_by s returns the index in the
TCPd Streams Stack matching the specified stream reference
provided.

Stream Reference is the TCP communication stream refer-
ence to look for in the TCPd Streams Stack.

Stream Stack Index is the positive longint index value in the
TCPd Streams Stack for the row matching the provided TCP

communications stream reference Stream Reference. If the
value for Stream Reference is not found in the TCPd Streams
Stack, Streams Stack Index will be set to negative one (-1).

& TCPd_Get_IPAddress_by_Index_s

TCPd_Get_IPAddress_by_Index_s (Streams Stack Index) => IP Address

TCPd_Get_IPAddress_by_Index_s

(
)

-> Streams Stack Index : Longint

=> [P Address : Longint

http://www.deepskytech.com/

Parameter Type Description

Streams Stack Index Longint Index into TCPd Streams Stack

IP Address Longint IP address within specified index of
TCPd Streams Stack

The method TCPd_Get IPAddress_by Index_s returns the
IP address in the TCPd Streams Stack matching the speci-
fied TCPd Streams Stack index provided.

Stream Stack Index is the row index to look for in the TCPd
Streams Stack.

IP Address is the IP address stored in the row specified by
Stream Stack Index within the TCPd Streams Stack. If the
value of Stream Stack Index is invalid, out of range, or not
found in the TCPd Streams Stack, then IP Address will be set
to negative one (-1).

Note: this method was added as of TCP Deux v1.0.1.

= TCPd_Get_IPAddress_s
TCPd_Get_IPAddress_s (Stream Reference) => IP Address

TCPd_Get_IPAddress_s
(

-> Stream Reference : Longint

)
=> [P Address : Longint

Parameter Type Description

Stream Reference Longint Stream reference to lookup in TCPd
Streams Stack

IP Address Longint IP address listed in TCPd Streams
Stack for specified stream reference

The method TCPd_Get IPAddress_s returns the IP address
in the TCPd Streams Stack matching the specified stream
reference provided.

http://www.deepskytech.com/

Stream Reference is the TCP communication stream refer-
ence to look for in the TCPd Streams Stack.

IP Address is the IP address value in the TCPd Streams Stack
for the row matching the provided TCP communications
stream reference Stream Reference . If the value for Stream
Reference is not found in the TCPd Streams Stack, IP
Address will be set to negative one (-1).

Note: this method was added as of TCP Deux v1.0.1.

= TCPD_Get_Index_by_ProcessID_s

TCPD_Get_Index_by_ProcessID_s (Process ID) => Streams Stack Index

TCPD_Get_Index_by_ProcessID_s

(

-> Process ID : Longint

)

=> Streams Stack Index : Longint

Parameter Type Description

Process ID Longint ID of process to search for within
TCPd Streams Stack

Streams Stack Index Longint Index in TCPd Streams Stack match-

ing Process ID

The method TCPd_Get Index by ProcessID_s returns the
index in the TCPd Streams Stack matching the specified
process ID provided.

Process ID is the process ID to look for in the TCPd Streams

Stack.

Streams Stack Index is the index into the TCPd Streams

Stack matching Process ID.

If Process ID is invalid, out of

range, or not found in the TCPd Streams Stack, then Streams
Stack Index will be set to negative one (-1).

Note: this method was added as of TCP Deux v1.0.1.

http://www.deepskytech.com/

& TCPD_Get_LocalPort_by_Index_s

TCPD_Get_LocalPort_by_Index_s (Streams Stack Index) => Local Port

TCPD_Get_LocalPort_by_Index_s

(
)

-> Streams Stack Index : Longint

=> Local Port : Longint

Parameter Type Description

Streams Stack Index Longint Index into TCPd Streams Stack

Local Port Longint Local port within specified index of
TCPd Streams Stack

The method TCPd_Get_LocalPort_by Index_s returns the
local port in the TCPd Streams Stack matching the speci-
fied TCPd Streams Stack index provided.

Stream Stack Index is the row index to look for in the TCPd
Streams Stack.

Local Port is the local port stored in the row specified
byStream Stack Index within the TCPd Streams Stack. If the
value of Stream Stack Index is invalid, out of range, or not
found in the TCPd Streams Stack, then Local Port will be set
to negative one (-1).

Note: this method was added as of TCP Deux v1.0.1.

= TCPd_Get_LocalPort_s

TCPd_Get_LocalPort_s (Stream Reference) => Port

TCPd_Get_LocalPort_s

(
)

-> Stream Reference : Longint

http://www.deepskytech.com/

=> Port : Longint

Parameter Type Description

Stream Reference Longint Stream reference to lookup in TCPd

Streams Stack

Port

Longint Port listed in TCPd Streams Stack for
specified stream reference

The method TCPd_Get _LocalPort_s returns the local port
in the TCPd Streams Stack matching the specified stream
reference provided.

Stream Reference is the TCP communication stream refer-
ence to look for in the TCPd Streams Stack.

Portis the local port value in the TCPd Streams Stack for the
row matching the provided TCP communications stream ref-
erence Stream Reference. |f Stream Reference is not found
in the TCPd Streams Stack, Port will be set to negative one

(-1).

= TCPD_Get_ProcessID_by_Index_s

TCPD_Get_ProcessID_by_Index_s (Streams Stack Index) => Process ID

TCPD_Get_ProcessID_by_Index_s

(
)

-> Streams Stack Index : Longint

=> Process ID : Longint

Parameter Type Description

Streams Stack Index Longint Index into TCPd Streams Stack

Process ID Longint Process ID within specified index of
TCPd Streams Stack

The method TCPd_Get ProcessID_by Index s returns the
process ID in the TCPd Streams Stack matching the speci-
fied TCPd Streams Stack index provided.

http://www.deepskytech.com/

Stream Stack Index is the row index to look for in the TCPd
Streams Stack.

Process ID is the process ID stored in the row specified by
Stream Stack Index within the TCPd Streams Stack. If the
value of Stream Stack Index is invalid, out of range, or not
found in the TCPd Streams Stack, then Process ID will be set
to negative one (-1).

Note: this method was added as of TCP Deux v1.0.1.

= TCPd_Get_ProcessID_s
TCPd_Get_ProcessID_s (Stream Reference) => Handler Process ID

TCPd_Get_ProcessID _s
(

-> Stream Reference : Longint

)
=> Handler Process ID : Longint

Parameter Type Description

Stream Reference Longint Stream reference to lookup in TCPd
Streams Stack

Handler Process 1D Longint Handler process ID listed in TCPd
Streams Stack for specified stream
reference

The method TCPd_Get ProcessID s returns the 4D handler
process ID in the TCPd Streams Stack matching the speci-
fied stream reference provided.

Stream Reference is the TCP communication stream refer-
ence to look for in the TCPd Streams Stack.

Handler Process ID is the 4D handler process ID in the TCPd
Streams Stack for the row matching the provided TCP com-
munications stream reference Stream Reference. If the
value for Stream Reference is not found in the TCPd Streams
Stack, Handler Process ID will be set to negative one (-1).

http://www.deepskytech.com/

& TCPD_Get_Protocol_by_Index_s
TCPD_Get_Protocol_by_Index_s (Streams Stack Index) => Protocol

TCPD_Get_Protocol_by_Index_s
(

-> Streams Stack Index : Longint

)

=> Protocol : Longint

Parameter Type Description

Streams Stack Index Longint Index into TCPd Streams Stack

Protocol Longint Protocol within specified index of
TCPd Streams Stack

The method TCPd_Get_Protocol by Index_s returns the
protocol in the TCPd Streams Stack matching the speci-
fied TCPd Streams Stack index provided.

Stream Stack Index is the row index to look for in the TCPd
Streams Stack.

Protocol is the protocol stored in the row specified by
Stream Stack Index within the TCPd Streams Stack. If the
value of Stream Stack Index is invalid, out of range, or not
found in the TCPd Streams Stack, then Protocol will be set to
negative one (-1). Valid values for Protocol include all of
the protocol values in the constants group TCPd Protocols
included with the TCP Deux component.

Note: this method was added as of TCP Deux v1.0.1.

= TCPd_Get_Protocol_Count_s
TCPd_Get_Protocol Count_s (Protocol) => Streams Count

TCPd_Get_Protocol Count_s
(

http://www.deepskytech.com/

-> Protocol : Longint

)
=> Streams Count : Longint
Parameter Type Description
Protocol Longint Protocol to lookup in TCPd Streams
Stack
Streams Count Longint Number of entries in TCPd Streams

Stack matching specified protocol

The method TCPd_Get _Protocol _Count_s returns the
number of TCP communication streams currently in the TCPd
Streams Stack using the specified protocol.

Protocol is the protocol to check within the TCPd Streams
Stack to indicate which TCP communications streams are to
be counted by this method. Valid values for Protocol include
all of the protocol values in the constants group

TCPd Protocols included with the TCP Deux component.

Streams Count is the number of rows in the TCPd Streams
Stack which are using the specified protocol Protocol.

= TCPd_Get_Protocol_s

TCPd_Get_Protocol_s (Stream Reference) => Protocol

TCPd_Get_Protocol_s

(
-> Stream Reference : Longint
)
=> Protocol : Longint
Parameter Type Description
Stream Reference Longint Stream reference to lookup in TCPd
Streams Stack
Protocol Longint Protocol listed in TCPd Streams Stack

for specified stream reference

http://www.deepskytech.com/

The method TCPd_Get_ Protocol_s returns the protocol in the
TCPd Streams Stack matching the specified stream reference
provided.

Stream Reference is the TCP communication stream refer-
ence to look for in the TCPd Streams Stack.

Protocol is the protocol value in the TCPd Streams Stack for
the row matching the provided TCP communications stream
reference Stream Reference. |f Stream Reference is not
found in the TCPd Streams Stack, Protocol will be set to neg-
ative one (-1). Valid values for Protocol include all of the
protocol values in the constants group TCPd Protocols
included with the TCP Deux component.

= TCPd_Get_Status
TCPd_Get_Status (Stream Reference ; Selector Code) => Stream Status
TCPd_Get_Status

(-> Stream Reference : Longint

-> Selector Code : Longint

=> Stream Status : Longint

Parameter Type Description

Stream Reference Longint Stream reference to check status of
directly from TCP plugin

Selector Code Longint ITK status selector value (ITK only,
see ITK manual for ITK_TCPStatus)

Stream Status Longint Status value for specified stream ref-
erence returned directly from TCP
plugin

The method TCPd_Get_Status returns the TCP communica-
tions stream status as returned directly from the TCP plugin
being used.

http://www.deepskytech.com/

The current stream status of the specified TCP communica-
tions stream will be updated automatically within the TCPd
Streams Stack within this method.

Stream Reference is the TCP communication stream refer-
ence to to check the status of with the current TCP plugin
being used.

Selector Code (supported with ITK only) is the ITK selector
code for retrieving the TCP communications stream status
of. More details about Selector Code are available in the ITK
plugin manual for the plugin method ITK_TCPStatus . When
using the IC plugin, this value is ignored.

Stream Status is the status of the TCP communications
stream as obtained directly from the current TCP plugin. The
following table lists the valid values and their meanings for
Stream Status:

Status Name Description

-1 error invalid stream reference

0 Closed no connection

2 Listen listening for incoming connection

4 SYN received incoming connection being established
6 SYN sent outgoing connection being established

8 Established connection up

10 FIN Wait 1 connection up; close sent

12 FIN Wait 2 connection up; close sent and acknowledged
14 Close Wait connection up; close received

16 Closing connection up; close issued and received
18 Last ACK connection up; close issued and received
20 Time Wait connection being broken

& TCPD_Get_Status_by_Index_s

TCPD_Get_Status_by_Index_s (Streams Stack Index) => Stream Status

http://www.deepskytech.com/

TCPD_Get_Status_by_Index_s

(
)

-> Streams Stack Index : Longint

=> Stream Status : Longint

Parameter Type Description

Streams Stack Index Longint Index into TCPd Streams Stack

Stream Status Longint Status value for specified stream ref-

erence returned directly from TCPd
Streams Stack

The method TCP_Get_Status_by Index_s returns the
stream status in the TCPd Streams Stack matching the
specified TCPd Streams Stack index provided.

Using this method, no calls are made to the TCP plugin to
update the stream status within the TCPd Streams Stack or
to obtain the actual, direct stream status value from the
current TCP plugin.

Stream Stack Index is the row index to look for in the TCPd
Streams Stack.

Stream Status is the stream status value in the TCPd
Streams Stack matching the specified TCPd Streams Stack
index provided in Stream Stack Index. If the value for
Stream Stack Index is invalid, out of range, or not found in
the TCPd Streams Stack, Stream Status will be set to nega-
tive one (-1). The following table lists the valid values and
their meanings for the Stream Status:

Status Name Description

error invalid stream reference

Closed no connection

Listen listening for incoming connection
SYN received incoming connection being established
SYN sent outgoing connection being established
Established connection up

FIN Wait 1 connection up; close sent

FIN Wait 2 connection up; close sent and acknowledged

http://www.deepskytech.com/

Status Name Description

14 Close Wait connection up; close received

16 Closing connection up; close issued and received
18 Last ACK connection up; close issued and received
20 Time Wait connection being broken

Note: this method was added as of TCP Deux v1.0.1.

& TCPd_Get Status_s
TCPd_Get_Status_s (Stream Reference) => Stream Status

TCPd_Get_Status_s

(
-> Stream Reference : Longint
)
=> Stream Status : Longint
Parameter Type Description
Stream Reference Longint Stream reference to check status of
directly from TCPd Streams Stack
Stream Status Longint Status value for specified stream ref-
erence returned directly from TCPd
Streams Stack

The method TCP_Get_Status_s returns the stream status
in the TCPd Streams Stack matching the specified stream
reference provided.

Using this method, no calls are made to the TCP plugin to
update the stream status within the TCPd Streams Stack or
to obtain the actual, direct stream status value from the
current TCP plugin.

Stream Reference is the TCP communication stream refer-
ence to look for in the TCPd Streams Stack.

Stream Status is the stream status value in the TCPd
Streams Stack for the row matching the provided TCP com-

http://www.deepskytech.com/

munications stream reference Stream Reference.

If the

value for Stream Reference is not found in the TCPd Streams
Stack, Stream Status will be set to negative one (-1). The
following table lists the valid values and their meanings for

Stream Status:

Status Name Description

-1 error invalid stream reference

0 Closed no connection

2 Listen listening for incoming connection

4 SYN received incoming connection being established

6 SYN sent outgoing connection being established

8 Established connection up

10 FIN Wait 1 connection up; close sent

12 FIN Wait 2 connection up; close sent and acknowledged
14 Close Wait connection up; close received

16 Closing connection up; close issued and received
18 Last ACK connection up; close issued and received
20 Time Wait connection being broken

= TCPd_Get_StreamRef_by_Index_s
TCPd_Get_StreamRef_by_Index_s (Stream Stack Index) => Stream Reference

TCPd_Get_StreamRef_by_Index_s

(
-> Streams Stack Index : Longint
)
=> Stream Reference : Longint
Parameter Type Description
Streams Stack Index Longint Index into TCPd Streams Stack
Stream Reference Longint Stream reference within specified
index of TCPd Streams Stack

http://www.deepskytech.com/

The method TCPd_Get _StreamRef_by Index_s returns the
stream reference in the TCPd Streams Stack matching the
specified TCPd Streams Stack index provided.

Stream Stack Index is the row index to look for in the TCPd
Streams Stack.

Stream Reference is the stream reference stored in the
specified row Stream Stack Index within the TCPd Streams
Stack. If Stream Stack Index is invalid, out of range, or not
found in the TCPd Streams Stack, then Stream Reference will
be set to negative one (-1).

= TCPd_Get_Stream_Information

TCPd_Get_Stream_Information (Stream Reference ; Referenced Remote IP Address ;

Referenced Remote Port ; Referenced Local Port ; Referenced SRTT ; Refer-
enced Local IP Address) => Error Code

TCPd_Get_Stream_Information

(
-> Stream Reference : Longint
-> Referenced Remote IP Address : Pointer
-> Referenced Remote Port : Pointer
-> Referenced Local Port : Pointer
-> Referenced SRTT : Pointer
-> Referenced Local IP Address : Pointer
)
=> Error Code : Longint
Parameter Type Description
Stream Reference Longint Stream reference to retrieve informa-
tion about
Referenced Remote IP Pointer Referenced longint variable to hold
Address remote IP address (ITK only)
Referenced Remote Port | Pointer Referenced longint variable to hold
remote port (ITK only)
Referenced Local Port Pointer Referenced longint variable to hold
local port
Referenced SRTT Pointer Referenced longint variable to hold
SRTT value (ITK only)

http://www.deepskytech.com/

Parameter Type Description

Referenced Local IP Pointer Referenced longint variable to hold
Address local IP address

Error Code Longint Error code returned from call

The method TCPd_Get_Stream _Information will return
information pertaining directly to a specified stream refer-
ence. The data pertaining to the specified stream reference
is retrieved directly from the current TCP plugin.

Stream Reference is the TCP communications stream refer-
ence to retrieve information about.

Referenced Remote IP Address (support by ITK only) is a
pointer to a longint variable to contain the IP address of the
remote host currently communicating on the specified TCP
communications stream Stream Reference. If a NULL pointer
is passed for Referenced Remote IP Address, then the remote
IP address will not be retrieved or returned by this method.

Referenced Remote Port (support by ITK only) is a pointer to
a longint variable to contain the port of the remote host cur-
rently communicating on the specified TCP communications
stream Stream Reference. If a NULL pointer if passed for
Referenced Remote Port, then the remote port will not be
retrieved or returned by this method.

Referenced Local Port is a pointer to a longint variable to
contain the port of the local host being used by the specified
TCP communications stream Stream Reference. If a NULL
pointer is passed for Referenced Local Port, then the local
port will not be retrieved or returned by this method.

Referenced SRTT (support by ITK only) is a pointer to a long-
int variable to contain the smoothed round trip time for the

specified TCP communications stream Stream Reference. |If
a NULL pointer is passed for Referenced SRTT, then the SRTT
will not be retrieved or returned by this method.

Referenced Local IP Address is a pointer to a longint variable
to contain the IP address of the local host being used by the
specified TCP communications stream Stream Reference. |If
a NULL pointer is passed in the Referenced Local Port param-
eter, then the local IP address will not be retrieved or
returned by this method.

http://www.deepskytech.com/

Error Code is the error code returned by this method. If an
error occurs in this method, Error Code will be set to nega-
tive one (-1). If no error occurs in this method, Error Code
will be set to zero (0).

= TCPd_Get_TCP_Info

TCPd_Get_TCP_Info (Referenced Local IP Address ; Referenced TCP Version Code ;

Referenced Open Transport Version

; Referenced Plugin Version) => Error

Code
TCPd_Get_TCP_Info
(
-> Referenced Local IP Address : Pointer
-> Referenced TCP Version Code : Pointer
-> Referenced Open Transport Version : Pointer
-> Referenced Plugin Version : Pointer
)
=> Error Code : Longint
Parameter Type Description
Referenced Local IP Pointer Referenced longint variable to hold
Address local IP address
Referenced TCP Version | Pointer Referenced longint variable to hold
Code TCP layer code
Referenced Open Trans- | Pointer Referenced longint variable to hold
port Version Open Transport version
Referenced Plugin Version | Pointer Referenced longint variable to hold
TCP plugin version
Error Code Longint Error code returned from call

The method TCPd_Get TCP_Info returns general informa-
tion about the TCP environment on the local device and the
current TCP plugin.

Referenced Local IP Address is a pointer to a longint variable
to contain the local primary IP address. If a NULL pointer is
passed for Referenced Local IP Address, then the local IP
address will not be retrieved or returned by this method.

http://www.deepskytech.com/

Referenced TCP Version Code is a pointer to a longint vari-

able to contain the TCP version code of the local device. If a
NULL pointer is passed for Referenced TCP Version Code, then
the local TCP version code will not be retrieved or returned
by this method. Valid values for Referenced TCP Version

Code are:
Code Description
1 MacTCP v1.1.0
2 MacTCP v1.1.1
3 MacTCP v2.0.x
4 Open Transport
5 WinSock

Referenced Open Transport Version is a pointer to a longint
variable to contain the version of Open Transport currently
being used. If a NULL pointer is passed for Referenced Open
Transport Version, then the OT version will not be retrieved
or returned by this method.

Referenced Plugin Version is a pointer to a longint variable
to contain the version of the current TCP plugin being used.
If a NULL pointer is passed for Referenced Plugin Version ,
then the TCP plugin version will not be retrieved or returned
by this method.

Error Code is the error code returned by this method. If an
error occurs in this method, Error Code will be set to nega-
tive one (-1). If no error occurs in this method, Error Code
will be set to zero (0).

& TCPd_Open_Listener

TCPd_Open_Listener (Remote IP Address ; Remote Port ; Local Port ; Receive Buffer
Bytes ; TCP Options ; Local IP Address ; Protocol ; SSL Private Key Full
Path ; SSL Certificate Full Path ; SSL Private Key Password ; Send Timeout
) => Stream Reference

TCPd_Open_Listener
(

http://www.deepskytech.com/

-> Remote IP Address : Longint

-> Remote Port : Longint

-> Local Port : Longint

-> Receive Buffer Bytes : Longint
-> TCP Options : Longint

-> Local IP Address : Longint

-> Protocol : Longint

-> SSL Private Key Full Path : Text
-> SSL Certificate Full Path : Text
-> SSL Private Key Password : Text
-> Send Timeout : Longint

=> Stream Reference : Longint

Parameter Type Description

Remote IP Address Longint IP address of remote host to accept
connections from

Remote Port Longint Port of remote host to accept connec-
tions from

Local Port Longint Port of local host to accept connec-
tions from

Receive Buffer Bytes Longint Number of bytes to use for receive
buffer (ITK only)

TCP Options Longint MacTCP stream options (ITK only,
see MacTCP Programmer's Manual
for more details)

Local IP Address Longint IP address of local host to accept con-
nections from (ITK only)

Protocol Longint Protocol to be used on stream

SSL Private Key Full Path | Text Full path to SSL private key file (IC
v6.8.1 or above or ITK v2.5.x only)

SSL Certificate Full Path | Text Full path to SSL certificate file (IC
v6.8.1 or above or ITK v2.5.x only)

SSL Private Key Password | Text Password for SSL private key (IC
v6.8.1 or above or ITK v2.5.x only)

Send Timeout Longint Send timeout to be used on stream
(ITK only, IC v6.8.1 or above does not
accept this parameter, IC v6.8.0 or
below is synchronous)

Stream Reference Longint Stream reference for new TCP listener

http://www.deepskytech.com/

The method TCPd_Open_Listener opens a new TCP commu-
nications stream to listen upon using the specified parame-
ters.

Beyond the parameters differences between the ITK and IC
plugins, it is important to note this method will operate
asynchronously or synchronously for TCP listens. IC does not
support asynchronous TCP communications streams which
listen asynchronously. So, when using the IC TCP plugin and
calling this method, control will not be returned from this
method until both the listener stream has been opened
(assuming no errors which would be returned immediately)
and a remote host has connected.

The new TCP communications stream will be added to the
TCPd Streams Stack automatically within this method.

Remote IP Address is the IP address of the remote host to
allow connections from. Set the value of this parameter to
zero (0) to accept connections from any remote host.

Remote Port is the remote port to accept connections upon.
Set the value of this parameter to zero (0) to accept connec-
tions from any remote port.

Local Port is the local port to listen on with the local host.
If IC v6.8.1 or above or ITK v2.5.x is the current TCP plugin
and Local Portis set to 443, the standard port used for SSL
encrypted HTTP communications, then SSL will be enabled by
default on the new TCP communications stream being opened
for listening.

Receive Buffer Bytes (supported by ITK only) is the number of
bytes ITK will allocate for the receive buffer on the local
host. It is recommended that this value be between 8192
(8K) and 32768 (32K). If Receive Buffer Bytes is set to zero
(0) then the default receive buffer size (8K) will be used.
When IC is the current TCP plugin, this parameter is ignored.

TCP Options (supported by ITK only) is the MacTCP options to
use for the new TCP communications stream being opened.
Refer to the MacTCP Programmer's manual for details about
this parameter. When using ITK v2.5.x as the TCP plugin,
passing a value of 2048 will force the new TCP communica-
tions listening stream to utilize the SSL capabilities within

http://www.deepskytech.com/

ITK v2.5.x. When IC is the current TCP plugin, this parameter
is ignored.

Local IP Address (supported by ITK only) is the local IP
address to connect with on the local host. This is useful
when the local host device is currently configured with mul-
tiple IP addresses Setting Local IP Address to zero (0) will
default the new TCP communications stream to listen on all
of the IP addresses assigned to the local host device. When
IC is the current TCP plugin, this parameter is ignored and
all of the IP addresses of the local host device are used for
the new TCP communications stream.

Protocol is the protocol to be used with the new TCP commu-
nications stream. This value has no affect on the new TCP
communications stream but is stored in the TCPd Streams
Stack for later reference. Valid values for Protocol include
all of the protocol values in the constants group

TCPd Protocols included with the TCP Deux component.

SSL Private Key Full Path (supported by IC v6.8.1 or above or
ITK v2.5.x only) is the full document path on the local
machine for the SSL private key document. This parameter is
needed only when the new TCP communications stream for
listening has SSL enabled. When using IC below version 6.8.1
or ITK v2.0.x, this parameter is ignored.

SSL Certificate Full Path (supported by IC v6.8.1 or above or
ITK v2.5.x only) iis the full document path on the local
machine for the SSL certificate document. This parameter is
needed only when the new TCP communications stream for
listening has SSL enabled. When using IC below version 6.8.1
or ITK v2.0.x, this parameter is ignored.

SSL Private Key Password (supported by IC v6.8.1 or above or
ITK v2.5.x only) is the password used to encrypt the SSL pri-
vate key when the SSL key and certificate were originally
created. This parameter is needed only when the new TCP
communications stream for listening has SSL enabled. When
using IC below 6.8.1 or ITK v2.0.x, this parameter is ignored.

Send Timeout (supported by ITK only) is the default send
timeout in seconds for all TCP sending on the new TCP com-
munications stream being created. When Send Timeout sec-
onds have elapsed in one of the TCP Deux send routines, the
routine will return control immediately and the status of the

http://www.deepskytech.com/

TCP communications stream will remain the same. When IC
is the current TCP plugin, Send Timeout is ignored.

Stream Reference is the uniqgue TCP communications stream

reference for the newly created TCP communications stream.

This value will always be greater than zero when a valid TCP
communications stream has been established. If Stream Ref-
erence is zero (0), the TCP communications stream failed to

be opened properly.

= TCPd_Open_Stream

TCPd_Open_Stream (Remote Host Name ; Remote Port ; Receive Buffer Bytes ; TCP
Options ; Local Port ; Local IP Address ; Protocol) => Stream Reference

TCPd_Open_Stream

(
-> Remote Host Name : String[80]
-> Remote Port : Longint
-> Receive Buffer Bytes : Longint
-> TCP Options : Longint
-> Local Port : Longint
-> Local IP Address : Longint
-> Protocol : Longint
)
=> Stream Reference : Longint

Parameter Type Description

Remote Host Name String[80] | Host name of remote device to con-
nect to

Remote Port Longint Port of remote host to connect to

Receive Buffer Bytes Longint Number of bytes to assign to TCP
receive buffer (ITK only)

TCP Options Longint MacTCP stream options (ITK only,
see MacTCP Programmer's Manual
for more details)

Local Port Longint Port on local machine to connect
through (ITK only)

Local IP Address Longint IP address on local machine to con-
nect through (ITK only)

http://www.deepskytech.com/

Parameter Type Description

Protocol Longint Protocol to be used for stream
Stream Reference Longint Stream reference for new TCP con-
nection

The method TCPd_Open_Stream will open a new TCP com-
munications stream for sending data.

The new TCP communications stream will be added to the
TCPd Streams Stack automatically within this method.

To open a TCP commucations stream to a specified remote
host, the remote host must be listening on the specified port
for the connection to be established.

Remote Host Name is the domain name or dotted IP address of
the remote host to open a TCP communications stream with.

Remote Port is the remote port to connect to on the remote
host. If the current TCP plugin is IC, Remote Port will also
be the local port used to open the new TCP communications
stream. If IC v6.8.1 or above or ITK v2.5.x is the current TCP
plugin (with a valid ITK Pro serial) and Remote Port is set to
443, the standard port used for SSL encrypted HTTP commu-
nications, then SSL will be enabled by default on the new TCP
communications stream being opened.

Receive Buffer Bytes (supported by ITK only) is the number of
bytes ITK will allocate for the receive buffer on the local
host. It is recommended that this value be between 8192
(8K) and 32768 (32K). If Receive Buffer Bytes is set to zero
(0) then the default receive buffer size (8K) will be used.
When IC is the current TCP plugin, this parameter is ignored.

TCP Options (supported by ITK only) is the MacTCP options to
use for the new TCP communications stream being opened.
Refer to the MacTCP Programmer's manual for details about
this parameter. When using ITK v2.5.x as the TCP plugin
(with a valid ITK Pro serial), passing a value of 2048 will
force the new TCP communications stream to utilize the SSL
capabilities within ITK v2.5.x. When IC is the current TCP
plugin, this parameter is ignored.

Local Port (supported by ITK only) is the local port to con-
nect with on the local host. When IC is the current TCP plu-

http://www.deepskytech.com/

gin, this parameter is ignored and the local port used is
instead the same value as Remote Port.

Local IP Address (supported by ITK only) is the local IP
address to connect with on the local host. This is useful
when the local host device is currently configured with mul-
tiple IP addresses Setting Local IP Address to zero (0) will
default the new TCP communications stream to use the pri-
mary |IP address assigned to the local host device. When IC is
the current TCP plugin, this parameter is ignored and the pri-
mary IP address of the local host device is used for the new
TCP communications stream.

Protocol is the protocol to be used with the new TCP commu-
nications stream. This value has no affect on the new TCP
communications stream but is stored in the TCPd Streams
Stack for later reference. Valid values for Protocol include
all of the protocol values in the constants group

TCPd Protocols included with the TCP Deux component.

Stream Reference is the uniqgue TCP communications stream

reference for the newly created TCP communications stream.

This value will always be greater than zero when a valid TCP
communications stream has been established. If Stream Ref-
erence is zero (0), the TCP communications stream failed to

be opened properly.

= TCPd_qi_Handler_Busy_s

TCPd_qi_Handler_Busy_s (Handler Process ID) => qi Handler Busy

TCPd_qi_Handler_Busy_s

(

-> Handler Process ID : Longint

)

=> qi Handler Busy : Longint

Parameter

Type

Description

Handler Process ID

Longint

Process ID to lookup in TCPd
Streams Stack

http://www.deepskytech.com/

Parameter

Type

Description

qi Handler Busy

Longint

qi for whether specified handler pro-
cess ID is listed as busy in TCPd
Streams Stack

The method TCPd _qi_Handler_Busy s returns an indicator
for whether a specified handler process ID is currently
listed as being in use in the TCPd Streams Stack . A 4D
handler process ID is considered "in use" merely by being
listed in the TCPd Streams Stack.

Handler Process ID is the 4D process ID to check for exist-
ence in the TCPd Streams Stack.

qi Handler Busy is the indicator for whether the specified 4D
handler process ID Handler Process ID is in use within the
TCPd Streams Stack. qi Handler Busy will be set to zero (0)
if the handler is not busy and will be set to one (1) if the

handler is busy.

= TCPd_qi_IC

TCPd_qi_IC =>gi Using IC

TCPd_qi_IC
=>qi Using IC : Longint
Parameter Type Description
qi Using IC Longint Indicator for whether TCP Deux is

currently set to use the 4D Internet
Commands plugin

The method TCPd _qi_IC returns qi for whether the TCP Deux
component is currently set to use the 4D Internet Commands
plugin for all TCP communications.

gi Using IC is a longint value returned to indicate whether
4D Internet Commands is the TCP plugin currently set to be
used by TCP Deux. This value will be set to zero (0) if 4D
Internet Commands is not set to be used and will be set to
one (1) if 4D Internet Commands is set to be used.

http://www.deepskytech.com/

Note: the method TCPd _qi IC was added in TCP Deux v1.1.1.

= TCPd_qi_INITed
TCPd_qi_INITed => gi TCP Deux Initialized

TCPd_qi_INITed
=> qi TCP Deux Initialized : Longint

Parameter Type Description

qi TCP Deux Initialized | Longint qi for whether TCP Deux has been
initialized successfully

The method TCPd _qi INITed returns an indicator for
whether the TCP Deux component has been initialized prop-
erly with a call to the method INIT_TCPd.

qi TCP Deux Initialized is the indicator for whether the TCP
deux component has been initialized properly. qi TCP Deux
Initialized will be set to zero (0) if TCP Deux has not been
initialized and will be set to one (1) if TCP Deux has been
initialized.

= TCPd_qi_ITK
TCPd_qi_ITK =>gi Using ITK

TCPd_qi_ITK
=> qi Using ITK : Longint

Parameter Type Description

gi Using ITK Longint Indicator for whether TCP Deux is
currently set to use the Internet Tool-
Kit plugin

The method TCPd_qi_ITK returns gi for whether the TCP
Deux component is currently set to use the Internet ToolKit
plugin for all TCP communications.

http://www.deepskytech.com/

qi Using ITK is a longint value returned to indicate whether
Internet ToolKit is the TCP plugin currently set to be used by
TCP Deux. This value will be set to zero (0) if Internet Tool-
Kit is not set to be used and will be set to one (1) if Internet
ToolKit is set to be used.

Note: the method TCPd _qi _ITK was added in TCP Deux
v1.1.1.

& TCPd_qi_Plugin_w_SSLStreams
TCPd_qi_Plugin_w_SSLStreams => gi SSL Support

TCPd_qi_Plugin_w_SSLStreams
=>gi SSL Support : Longint

Parameter Type Description
qi SSL Support Longint Indicator for whether current TCP
plugin supports SSL connections

The method TCPd_qi_Plugins_w_SSLStreams returns an
indicator for whether the current TCP plugin in use by TCP
Deux component suppports SSL connections. IC v6.8.1 or
above and ITK v2.5.x support SSL; IC v6.8.0 or below and ITK
v2.0.x do not support SSL.

qi SSL Supportis longint value returned to indicate whether
the TCP plugin currently set to be used by the TCP Deux com-
ponent supports SSL connections. This value will be set to
zero (0) if SSL connections are not supported and will be set
to one (1) if SSL connections are supported.

Note: the method TCPd _qi Plugins_w_SSLStreams was
added in TCP Deux v1.1.1.

= TCPd_qi_Protocol_w_SSL

TCPd_qi_Protocol_w_SSL (Protocol)=>gqi SSL

http://www.deepskytech.com/

TCPd_qi_Protocol_w_SSL

(

-> Protocol : Longint

)

=> i SSL : Longint

Parameter Type Description

Protocol Longint TCPd constant for protocol to check
for SSL use

qi SSL Longint Indicator for whether SSL is used in
specified protocol

The method TCPd _qi_Protocol _w_SSL returns an indicator
for whether a specified protocol used SSL

Protocol is a longint value to signify the protocol to check
for use of SSL. The values supported come directly from the
TCPd_Protocols constants group and should be used when
passing this parameter to this routine.

gi SSL is a longint indicator returned to signify whether the
specified protocol uses SSL. This value will be set to zero
(0) if the specified protocol does not use SSL and will be set
to one (1) if the specified protocol does use SSL.

Note: the method TCPd _qi_Protocol w_SSL was added in
TCP Deux v1.1.1.

= TCPd_Receive_File

TCPd_Receive_File (Stream Reference ; Local Full Path ; Filter Flag ; Receive Options ;

Timeout) => Error Code

TCPd_Receive_File

-> Stream Reference : Longint
-> Local Full Path : Text

-> Filter Flag : Longint

-> Receive Options : Longint
-> Timeout : Longint

=> Error Code : Longint

http://www.deepskytech.com/

Parameter Type Description

Stream Reference Longint Stream reference to receive to file

Local Full Path Text Full path to local document to pipe
stream contents to

Filter Flag Longint Byte filter flag to apply to received
data (ITK only)

Receive Options Longint Receive options (e.g. leave stream
open and append to existing docu-
ment)

Timeout Longint Inactivity timeout for TCP stream
while piping data to document

Error Code Longint Error code returned from call

The method TCPd_Receive_File will receive the data over
an established TCP communications stream and save it
directly to a specified document.

For data to be received over an established TCP communica-
tions stream, the stream status of the specified TCP commu-
nications stream must be "established" (8).

Stream Reference

is the TCP communications stream refer-

ence value to send the specified data through.

Local Full Path is the fully qualified document path to save
data received through the specified TCP communications

stream Stream Reference.

Filter Flag (supported by ITK only) is an indicator code for
filtering/encoding data being received. When using IC, this
parameter is ignored. The following table lists the valid
values for Filter Flag and their meanings:

Value

0

1
2
4
8

Description

no filter

Mac text to ISO 8859-1

ISO 8859-1 to Mac text

CR to CR/LF
CR/LF to CR

http://www.deepskytech.com/

Value Description

16 Mac text to HTML

32 HTML to Mac text

64 Mac 8 bit to HTML

128 Mac text to Base64

256 Base64 to Mac text

512 Mac text to Quoted-Printable

1024 Quoted-Printable to Mac text

Receive Options (supported by ITK only) is an indicator for
whether the received data is to be appended to the document
Local Full Path and whether the TCP communications stream
Stream Reference should be released once the receiving is
complete. The following table lists the valid values for
Receive Options and their meanings:

Value Description

0 overwrite document contents; release stream when done
1 append to document contents; release stream when done
2 overwrite document contents; leave stream open

3 append to document contents; leave stream open

Timeout is number of seconds to allow for the full document
contents to be received. Once Timeout seconds have elapsed,
this method will return immediately.

Error Code is the error code returned by the method call in
the event of error. If no error occurs, Error Code will be set
to zero (0).

& TCPd_Receive to BLOB

TCPd_Receive_to_BLOB (Stream Reference ; Referenced BLOB ; Maximum Receive
Bytes ; Filter Flag ; Receive Options ; End String ; Timeout) => Error
Code

TCPd_Receive_to BLOB

http://www.deepskytech.com/

-> Stream Reference :
-> Referenced BLOB :

Longint
Pointer

-> Maximum Receive Bytes : Longint
-> Filter Flag : Longint
-> Receive Options : Longint

-> End String : Text
-> Timeout : Longint

=> Error Code : Longint

Parameter Type Description

Stream Reference Longint Stream reference to receive to BLOB

Referenced BLOB Pointer Referenced BLOB to place received
data into

Maximum Receive Bytes | Longint Maximum number of bytes to receive
into BLOB (ITK only)

Filter Flag Longint Byte filter flag to apply to received
data (ITK only)

Receive Options Longint Receive options (e.g. leave stream
open, append to BLOB, etc.) (ITK
only)

End String Text End string value to indicate end of
received data (ITK only)

Timeout Longint Inacitivty timeout for TCP stream
while receiving data to BLOB (ITK
only)

Error Code Longint Error code returned from call

The method TCPd Receive to BLOB will receive the data
over an established TCP communications stream and place it
in a specified referenced BLOB.

For data to be received over an established TCP communica-
tions stream, the stream status of the specified TCP commu-
nications stream must be "established" (8).

Stream Reference is the TCP communications stream refer-
ence value to send the specified data through.

Referenced BLOB is a pointer to the BLOB to be used to place
received data through the specified TCP communications
stream Stream Reference into.

http://www.deepskytech.com/

Maximum Receive Bytes (supported by ITK only) is the maxi-
mum number of bytes to receive over the TCP communica-
tions stream Stream Reference. Set the value of this
parameter to zero (0) to receive all of the available data on
the TCP communication stream Stream Reference. When
using IC, this parameter is ignored.

Filter Flag (supported by ITK only) is an indicator code for
filtering/encoding data being received. When using IC, this
parameter is ignored. The following table lists the valid
values for Filter Flag and their meanings:

Value Description

0 no filter

1 Mac text to ISO 8859-1

2 ISO 8859-1 to Mac text

4 CR to CR/LF

8 CR/LFto CR

16 Mac text to HTML

32 HTML to Mac text

64 Mac 8 bit to HTML

128 Mac text to Base64

256 Base64 to Mac text

512 Mac text to Quoted-Printable
1024 Quoted-Printable to Mac text

Receive Options (supported by ITK only) is an indicator for
how the receiving of data is to be terminated. When using IC,
this parameter is ignored. The following table lists the valid
values for Receive Options and their meanings:

Value Description

1 append to existing BLOB contents

2 do not release stream after receiving

4 look for endstring only in new received

data

http://www.deepskytech.com/

Value Description

8 remove endstring from received data

NOTE: one or more options can be requested by summing flag
values.

End String (supported by ITK only) is the string of text to be
used to indicate the end of received data. When a string of
bytes matching End String are received in this method, the
method exits with a completed receipt of data. When using
IC, this parameter is ignored.

Timeout (supported by ITK only) is number of ticks (1/60th
of a second) to allow for the full document contents to be
received. Once Timeout ticks have elapsed, this method will
return immediately. Set the value of Timeout to zero (0) to
return control immediately, or set the value to negatize one
(-1) to indicate no timeout for the data being received. When
using IC, this parameter is ignored.

Error Code is the error code returned by the method call in
the event of error. If no error occurs, Error Code will be set
to zero (0).

& TCPD_Release_Stream

TCPD_Release_Stream (Stream Reference ; Stop Listening Code)

TCPD_Release_Stream

(
-> Stream Reference : Longint
-> Stop Listening Code : Longint
)
Parameter Type Description
Stream Reference Longint Reference for the TCP stream to
release
Stop Listening Code Longint Code value for whether listener
stream should stop listening on port
(valid for ITK only)

http://www.deepskytech.com/

The method TCPd_Release_Stream will release an open
TCP stream or listener and remove its entry from the TCPd
Streams Stack.

Note: this routine will not close the TCP stream, but only
releases the stream. A call to the method

TCPd _Close_ Stream_NoWait should preceed a call to this
method so that the TCP stream is closed before releasing it
from memory.

Stream Reference is the stream identifier for the stream to
be released. It is the same value as returned by the methods
TCPd _Open_Listener and TCPd_Open_Stream .

Stop Listening Code is a value for indicating whether the
internal listener should stop listening on the port which is
the stream Stream Reference is on. If Stop Listening Code is
set to zero (0) then the internal listener will not stop lis-
tening; if Stop Listening Code is set to one (1) then the
internal listener will stop listening. This value is valid only
when using ITK; when using IC, this value will be ignored.

Note: this method was added as of TCP Deux v1.0.1.

= TCPd_Send_BLOB

TCPd_Send_BLOB (Stream Reference ; Referenced BLOB ; Flush Flag ; Filter Flag ;

Starting Offset ; Ending Offset) => Send Buffer Bytes

TCPd_Send_BLOB

(

-> Stream Reference : Longint
-> Referenced BLOB : Pointer
-> Flush Flag : Longint

-> Filter Flag : Longint

-> Starting Offset : Longint
-> Ending Offset : Longint

=> Send Buffer Bytes : Longint

Parameter Type Description

Stream Reference Longint Stream reference to send BLOB on

http://www.deepskytech.com/

Parameter Type Description

Referenced BLOB Pointer Referenced BLOB to send

Flush Flag Longint Flag to indicate whether ITK send
buffer should be flushed with this
call (ITK only)

Filter Flag Longint Byte filter flag to apply to received
data (ITK only)

Starting Offset Longint Offset within Referenced BLOB to
begin sending data

Ending Offset Longint Offset within Referenced BLOB to stop
sending data

Send Buffer Bytes Longint Number of bytes now in send buffer
after completing this call

The method TCPd_Send _BLOB will send a specified portion
of a referenced BLOB over an established TCP communica-
tions stream.

For data to be sent over an established TCP communications
stream, the stream status of the specified TCP communica-
tions stream must be "established" (8).

Stream Reference is the TCP communications stream refer-
ence value to send the specified data through.

Referenced BLOB is a pointer to the BLOB to be used to send
data through the specified TCP communications stream
Stream Reference.

Flush Flag (supported by ITK only) is an indicator code for
whether the ITK internal send buffer is to used for the data
being sent. If Flush Flag is zero (0) then the ITK send buffer
will not be used; if Flush Flag is one (1) then the ITK send
buffer will be used. When using IC, this parameter is
ignored.

Filter Flag (supported by ITK only) is an indicator code for
filtering/encoding data being sent. When using IC, this
parameter is ignored. The following table lists the valid
values for Filter Flag and their meanings:

Value Description

0 no filter

http://www.deepskytech.com/

Value Description

1 Mac text to ISO 8859-1

2 ISO 8859-1 to Mac text

4 CR to CR/LF

8 CR/LFto CR

16 Mac text to HTML

32 HTML to Mac text

64 Mac 8 bit to HTML

128 Mac text to Base64

256 Base64 to Mac text

512 Mac text to Quoted-Printable
1024 Quoted-Printable to Mac text

Starting Offset is the starting offset within Referenced
BLOB to begin sending data from. Set Starting Offset to zero
(0) to indicate the beginning of Referenced BLOB.

Ending Offset is the ending offset within Referenced BLOB
for the last character to send data from. Set Ending Offset
to MAXLONG (the native 4D constant) to indicate the ending of
Referenced BLOB.

Send Buffer Bytes is the error code returned by the method
call in the event of error. If no error occurs, the Send Buffer
Bytes value will be set to the number of bytes in the ITK
output buffer or zero (0) if the ITK output buffer is not being
used or IC is the current TCP plugin.

= TCPd_Send_File

TCPd_Send_File (Stream Reference ; Local Full Path ; Filter Flag ; Sending Block Size
; Starting Offset ; Ending Offset ; Send Options) => Error Code

TCPd_Send_File
(
-> Stream Reference : Longint
-> Local Full Path : Text

http://www.deepskytech.com/

-> Filter Flag : Longint

-> Sending Block Size : Longint
-> Starting Offset : Longint

-> Ending Offset : Longint

-> Send Options : Longint

=> Error Code : Longint

Parameter Type Description

Stream Reference Longint Stream reference to send document
on

Local Full Path Text Full path to local document to send

Filter Flag Longint Byte filter flag to apply to sent data
(ITK only)

Sending Block Size Longint Maximum transmission block size to
use for sending data

Starting Offset Longint Offset within Local Full Path docu-
ment contents to begin sending data

Ending Offset Longint Offset within Local Full Path docu-
ment contents to stop sending data

Send Options Longint Indicator for which file fork of docu-
ment to send

Error Code Longint Error code returned from call

The method TCPd_Send File will send the contents of a
specified document over an established TCP communications
stream.

For data to be sent over an established TCP communications
stream, the stream status of the specified TCP communica-
tions stream must be "established" (8).

Stream Reference is the TCP communications stream refer-
ence value to send the specified data through.

Local Full Path is the fully qualified document path to be
sent through the specified TCP communications stream
Stream Reference.

Filter Flag (supported by ITK only) is an indicator code for
filtering/encoding data being sent. When using IC, this

http://www.deepskytech.com/

parameter is ignored. The following table lists the valid
values for Filter Flag and their meanings:

Value Description

0 no filter

1 Mac text to ISO 8859-1

2 ISO 8859-1 to Mac text

4 CR to CR/LF

8 CR/LFto CR

16 Mac text to HTML

32 HTML to Mac text

64 Mac 8 bit to HTML

128 Mac text to Base64

256 Base64 to Mac text

512 Mac text to Quoted-Printable
1024 Quoted-Printable to Mac text

Sending Block Size (supported by ITK only) is the data block
size to use for progressively sending the file contents
through the specified TCP communications stream. When
using the IC TCP plugin, this parameter is ignored.

Starting Offset is the starting offset within the document
Local Full Path to begin sending data from. Set Starting Off-
set to zero (0) to indicate the beginning of Local Full Path.

Ending Offsetis the ending offset within the document Local
Full Path for the last character to send data from. Set End-
ing Offset to MAXLONG (the native 4D constant) to indicate
the ending of Local Full Path.

Send Options (supported by ITK only) is an indicator flag used
on Macintosh to indicate which fork of the document Local
Full Path to send. If Send Options is zero (0) then the data
fork is sent; if Send Optionsis one (1) then the resource fork
is sent. If the current TCP plugin is IC, then this parameter
is ignored and the data fork of the document Local Full Path
only is sent.

http://www.deepskytech.com/

Error Code is the error code returned by the method call in
the event of error. If no error occurs, the Error Code value
will be set to zero (0).

= TCPd_Send_Text

TCPd_Send_Text (Stream Reference ; Send Text ; Flush Flag ; Filter Flag) => Send
Buffer Bytes

TCPd_Send_Text
(

-> Stream Reference : Longint
-> Send Text : Text

-> Flush Flag : Longint

-> Filter Flag : Longint

=> Send Buffer Bytes : Longint

Parameter Type Description

Stream Reference Longint Stream reference to send text on
Send Text Text Text to send

Flush Flag Longint Flag to indicate whether ITK send

buffer should be flushed with this
call (ITK only)

Filter Flag Longint Byte filter flag to apply to sent data
(ITK only)
Send Buffer Bytes Longint Error code returned from call

The method TCPd_Send_Text will send a specified text
value over an established TCP communications stream.

For data to be sent over an established TCP communications
stream, the stream status of the specified TCP communica-
tions stream must be "established" (8).

Stream Reference is the TCP communications stream refer-
ence value to send the specified text through.

Send Text is the text to send through the specified TCP com-
munications stream Stream Reference.

http://www.deepskytech.com/

Flush Flag (supported by ITK only) is an indicator code for
whether the ITK internal send buffer is to used for the data
being sent. If Flush Flag is zero (0) then the ITK send buffer
will not be used; if Flush Flag is one (1) then the ITK send
buffer will be used. When using IC, this parameter is
ignored.

Filter Flag (supported by ITK only) is an indicator code for
filtering/encoding data being sent. When using IC, this
parameter is ignored. The following table lists the valid
values for Filter Flag and their meanings:

Value Description

0 no filter

1 Mac text to ISO 8859-1

2 ISO 8859-1 to Mac text

4 CR to CR/LF

8 CR/LFto CR

16 Mac text to HTML

32 HTML to Mac text

64 Mac 8 bit to HTML

128 Mac text to Base64

256 Base64 to Mac text

512 Mac text to Quoted-Printable
1024 Quoted-Printable to Mac text

Send Buffer Bytes is the error code returned by the method
call in the event of error. If no error occurs, Send Buffer
Bytes will be set to the number of bytes in the ITK output
buffer or zero (0) if the ITK output buffer is not being used or
IC is the current TCP plugin.

= TCPd_Set_ProcessID_by_Index_s

TCPd_Set_ProcessID_by_Index_s (Stream Stack Index ; Handler Process ID)

http://www.deepskytech.com/

TCPd_Set_ProcessID_by_Index_s
(
-> Streams Stack Index : Longint
-> Handler Process ID : Longint

Parameter Type Description

Streams Stack Index Longint Index into TCPd Streams Stack

Handler Process 1D Longint Handler process ID to set into TCPd
Streams Stack

The method TCPd_Set ProcessID by Index s sets the 4D
handler process ID in the TCPd Streams Stack matching
the specified TCPd Streams Stack index.

Stream Stack Index is the row index to set in the TCPd
Streams Stack.

Handler Process ID is the 4D handler process ID value to set
in the TCPd Streams Stack for the row matching the TCPd
Streams Stack row index Stream Stack Index.

= TCPd_Set_Status_by_Index_s
TCPd_Set_Status_by_Index_s (Stream Stack Index ; Stream Status)

TCPd_Set_Status_by_Index_s

(
-> Streams Stack Index : Longint
-> Stream Status : Longint
)
Parameter Type Description
Streams Stack Index Longint Index into TCPd Streams Stack
Stream Status Longint Stream status to set into TCPd
Streams Stack

http://www.deepskytech.com/

The method TCPd_Set Status_by Index_s sets the TCP
communications stream status in the TCPd Streams Stack
matching the specified TCPd Streams Stack index.

Stream Stack Index is the row index to set in the TCPd
Streams Stack.

Stream Status is the TCP communications stream status
value to set in the TCPd Streams Stack for the row matching
the TCPd Streams Stack row index Stream Stack Index.

= TCPd_Update_Statuses_by_Prot_s
TCPd_Update_Statuses_by_Prot_s (Protocol)

TCPd_Update_Statuses_by_Prot_s

(
-> Protocol : Longint
)
Parameter Type Description
Protocol Longint Protocol to update all stream status
values for within TCPd Streams Stack

The method TCPd_Update_ Statuses by Prot s updates
the TCP communications stream statuses in the TCPd
Streams Stack for all rows matching a specified protocol
value. Stream statuses are sequentially checked by calling
the current TCP plugin for each row in the TCPd Streams
Stack matching the specified protocol value.

Protocol is the protocol value in the TCPd Streams Stack to
update all TCP communications streams statuses for . Valid
values for Protocol include all of the protocol values in the
constants group TCPd Protocols included with the TCP Deux
component.

& TCPd_Update_Statuses_by_Type_s

http://www.deepskytech.com/

TCPd_Update_Statuses_by_Type_s (Stream Type)

TCPd_Update_Statuses_by_Type_s
(
-> Stream Type : Longint

)

Parameter Type Description

Stream Type Longint Type of stream to update all stream
status values for within TCPd
Streams Stack

The method TCPd_Update_Statuses by Type s updates the
TCP communications stream statuses in the TCPd Streams
Stack for all rows matching a specified stream type. Stream
statuses are sequentially checked by calling the current TCP
plugin for each row in the TCPd Streams Stack matching the
specified stream type.

Stream Type is the type of stream in the TCPd Streams Stack
to update all TCP communications streams statuses. A
Stream Type value of zero (0) will update the status for all
sessions; a Stream Type value of one (1) will update the sta-
tus for all listeners; a Stream Type value of two (2) will
update the statuses of all streams, whether they be session
or listener streams.

Note: this method was added as of TCP Deux v1.0.1.

= TCPd_Wait_for_NotStatus

TCPd_Wait_for_NotStatus (Stream Reference ; Stream Status to Not Await ; Timeout
) => Stream Status

TCPd_Wait_for NotStatus
(
-> Streams Reference : Longint
-> Stream Status to Not Await : Longint
-> Timeout : Longint

=> Stream Status : Longint

http://www.deepskytech.com/

Parameter Type Description

Stream Reference Longint Stream reference to wait for
Stream Status to Not Longint Status value to wait until specified
Await stream reference does not equal

Timeout Longint Timeout in seconds to wait for speci-

fied stream reference status condi-
tions to be met

Stream Status Longint Last status of stream before returning

from call

The method TCPd_Wait _for_NotStatus waits for a speci-
fied stream reference to not equal a particular stream status
within a specified period of time.

This method is ideal for use when waiting for a TCP commu-
nications stream to begin changing state while waiting for a
connection to be established or for a closing to occur.

This method will wait for the conditions to be met on the
specified stream reference by accessing the current TCP plu-
gin for the stream status. This method will automatically
keep the TCPd Streams Stack synchronised with the cur-
rent state of the TCP communications stream status
retrieved from the current TCP plugin.

Stream Reference is the stream reference of the TCP com-
munications stream to be checking.

Stream Status to Not Await is the stream status value to
await for the stream Stream Reference to not be equal to.
Valid values for Stream Status to Not Await are:

Status Name Description

0 Closed no connection

2 Listen listening for incoming connection

4 SYN received incoming connection being established
6 SYN sent outgoing connection being established
8 Established connection up

http://www.deepskytech.com/

Status Name

10
12
14
16
18
20

FIN Wait 1
FIN Wait 2
Close Wait
Closing
Last ACK
Time Wait

Description

connection up; close sent

connection up; close sent and acknowledged
connection up; close received

connection up; close issued and received
connection up; close issued and received

connection being broken

Timeout is the number of seconds this method is to wait for
the stream Stream Reference to no longer have a stream sta-
tus of Stream Status to Not Await. If Timeout seconds
elapse without the stream status conditions being met, this
method will return control immediately to the calling

method.

Stream Status is the status of the TCP communications
stream Stream Reference when the return conditions,
whether they be by timeout or not, have been met within this

method.

& TCPd_Wait_for Status

TCPd_Wait_for_Status (Stream Reference ; Stream Status to Await ; Timeout) =>

Stream Status

TCPd_Wait_for_Status

(
-> Streams Reference : Longint
-> Stream Status to Await : Longint
-> Timeout : Longint
)
=> Stream Status : Longint
Parameter Type Description
Stream Reference Longint Stream reference to wait for
Stream Status to Await Longint Status value to wait until specified
stream reference does equal

http://www.deepskytech.com/

Parameter Type Description

Timeout Longint Timeout in seconds to wait for speci-

fied stream reference status condi-
tions to be met

Stream Status Longint Last status of stream before returning

from call

The method TCPd_Wait_for_Status waits for a specified
stream reference to equal a particular stream status within
a specified period of time.

This method is ideal for use when waiting for a TCP commu-
nications stream to reach a particular state while waiting
for a connection to be established or for a closing to occur.

This method will wait for the conditions to be met on the
specified stream reference by accessing the current TCP plu-
gin for the stream status. This method will automatically
keep the TCPd Streams Stack synchronised with the cur-
rent state of the TCP communications stream status
retrieved from the current TCP plugin.

Stream Reference is the stream reference of the TCP com-
munications stream to be checking.

Stream Status to Await is the stream status value to await
for the stream Stream Reference to be equal to. Valid values
for Stream Status to Await are:

Status Name Description

0 Closed no connection

2 Listen listening for incoming connection

4 SYN received incoming connection being established

6 SYN sent outgoing connection being established

8 Established connection up

10 FIN Wait 1 connection up; close sent

12 FIN Wait 2 connection up; close sent and acknowledged
14 Close Wait connection up; close received

16 Closing connection up; close issued and received

http://www.deepskytech.com/

Status Name Description

18
20

Last ACK connection up; close issued and received

Time Wait connection being broken

Timeout is the number of seconds this method is to wait for
the stream Stream Reference to have a stream status of
Stream Status to Await. If Timeout seconds elapse without
the stream status conditions being met, this method will
return control immediately to the calling method.

Stream Status is the status of the TCP communications
stream Stream Reference when the return conditions,
whether they be by timeout or not, have been met within this
method.

http://www.deepskytech.com/

Version History

The following is a brief version history of the TCP Deux component. It
details release notes, bug fixes, and changes for each version publicly
available.

http://www.deepskytech.com/

TCP Deux v1.1.1

released March 17th, 2003

Changes:

Fixed rare bug in which some 4D serials and names could cause com-
ponent to not serialize properly.

Corrected resource ID conflicts within platforms of BASh Affix doc-
uments; made certain all affix documents coincide with the new plu-
gin ID for TCP Deux (29601).

Made Affix document on Mac under 4D v67x a true plugin stub.

Corrected issue with bug in 4D v68x on Windows in which resource
names can cause conflicts.

Made all component methods invisible.
Corrected bug in ENV_Get_TCPd_RF_FullPath method in which it
would scan the system 4DX folder even if the Affix document was

found in the 4DX folder next to the structure.

Renumbered values for constants TCPd HTTPS Listen and
TCPd HTTPS Stream from 101 and 102 respectively to 301 and 302.

Added stream control type support for IC v681 and above.

Added support for new parameters for later version of 4D IC, specif-
ically IC v681 and above.

Added check to method TCPd_Open_Stream for whether IC plugin
supports SSL streams and whether specified protocol requires SSL.

Added TCPd IC v70x Plugin constant to TCPd_Plugin_Types con-
stants group for support of 4D v70x.

Added support for 4D v70x throughout component code.

Added distribution of 4D v70x compatible versions of component and
plugins.

Added 'cfrg' resource to all affix documents for compatibility with
4D v70x.

http://www.deepskytech.com/

Added the protected methods:
TCPd_qi_Plugin_w_SSLStreams
TCPd _qi_Protocol_w_SSL

Changed methods from private to protected:
TCPd _qi_IC
TCPd_qi_ITK

Added constants to constants group TCPd_Protocols:
TCPd DNS Listen
TCPd DNS Session
TCPd other SSL Listen
TCPd other SSL Session
TCPd SMPP_Listen
TCPd SMPP_Session

http://www.deepskytech.com/

TCP Deux v1.1.0

released February 28th, 2002

Changes:

Correct bug in serialization checking routines in which the compiled
state of the application was not being properly checked against
allowable serialization.

Increased minimum version of BASh compatible with this release to
v1.7.0.

Added support for new 4D plugin architecture under 4D v6.8.x in
which plugins can be located next to the current application in any
environment.

Dropped support for ITK v2.0.x from component when using 4D v6.8.x
or above.

Added new plugin type constant, TCPd_IC_v68x_Plugin (8), for use
with 4D v6.8.x.

Added compatibility check for different version of 4D Internet Com-
mands against 4D APPL version; an error will be generated if the
wrong version of 4D IC is being used with the version of the 4D APPL
being used.

Added support for 4D Internet Commands v6.8.x as the plugin type
when calling the method TCPd_qi_IC.

Added optional parameter to INIT_TCPd to indicate whether 4D Inter-
net Commands should be initialized when it is not being used as the
TCPd plugin of choice; by default, this is done now in case this
parameter is not passed.

Changed the name of the Mac affix document to
"Affix_TCP_Deux.4DX".

Changed the name of the Win affix document to "Affix_TCP_Deux".

Changed the name of the Mac 4D Internet Commands plugin to
"4D_IC_v673.4DX".

Changed the name of the Win 4D Internet Commands plugin to
"4D_IC_v673".

http://www.deepskytech.com/

Created a carbon affix document entitled "Affix_TCP_Deux.4CX".

Dropped completely the 4D Internet Commands plugin stub and
instead only distribute the full version of 4D IC (the only savings
this used to afford was a smaller size, but this was also added con-
fusion for many developers).

Included a carbon 4D Internet Commands plugin entitled
"4D_1C_v680f01.4DX".

Updated ITK to v2.5.1b04, a very stable version of ITK v2.5.x contain-
ing important bug fixes in the TCP stream API.

http://www.deepskytech.com/

TCP Deux v1.0.3

released 20020104

Changes:

Changed name of affix document on Windows from "Afx_TCPd" to
"Affix_TCP_Deux".

Changed TCPd Streams Stack locking and unlocking methods to
now be index based, thereby speeding considerably access into the
stack.

Changed all calls to locking and unlocking TCPd Streams Stack to
now be index based, thereby speeding considerably access into the
stack.

Changed TCPd_Send_BLOB routine to protected and the wrapper
routines called to private, as they were inadvertently left open in the
last release.

Updated both serial checking routines to pull data from BASh's ENV
module, speeding these routines up significantly.

Fixed a bug in the checking of serial numbers when initializing the
component.

Updated 4D Internet Commands (i.e. 4DIC or IC) to v6.7.3.

http://www.deepskytech.com/

TCP Deux v1.0.2

released 20011115

Changes:

Added ability to send MAXLONG as ending offset to end of BLOB
within the method TCPd _Send BLOB .

Fixed a bug in the method TCPd_Send_BLOB when using IC in which
the specified offsets within the BLOB were not being respected when
the BLOB was sent.

Added the ability for an empty serial to be used as a demo serial; this
allows for 30 minutes of unlimited use of TCP Deux.

http://www.deepskytech.com/

TCP Deux v1.0.1

released 20010906

Changes:

Modified the method TCPd_Get Status_s ; removed the locking of
the TCPd Streams Stack when getting the status from the stack.

Modified the routine TCPd_Get_Status ; removed the code that gets
the actual status from the stream with the new method

TCPd _Get_Status_Direct that gets the status directly from the
stream.

Modified the routine TCPd_Update_Statuses_by Prot_s ; now
the TCPd Streams Stack is locked before looping through the
stack while it updates all of the statuses with the new method
TCPd_Get_Status_Direct and unlocks it when completed.

Updated documentation for TCPd_Close_Stream to make it clear
that this method not only closes a TCP stream but also releases it.

Renamed the method TCPd Close Stream to
TCPd CloseRelease Stream .

Removed the locking and unlocking of the TCPd Streams stack from
the methods TCPd_Get LocalPort_ s , TCPd _Get ProcessID_s ,
TCPd_Get_Protocol_s ,and TCPd_Get_StreamRef_by Index_s .

Changed the method TCPd_Open_Listener to get the stream status
directly from the plugin using the new method
TCPd_Get_Status_Direct when adding the new stream to the
TCPd Streams Stack .

Optimized all routines for increased speed when using ITK as the plu-
gin.

Fixed a bug in which ITK v2.0.x was not recognized; this could cause
all forms of problems when running with ITK v2.0.x as the TCP plugin.

Changed the serialization checking routines to take advantage of the
new calls within BASh v1.6.0; these changes decrypt the serials for
TCPd using the BLOB routines in the CRYPT module, which have com-
plete compatibility with double byte operating systems (thanks to
Ken Ishimoto of K's Room for help with this).

http://www.deepskytech.com/

Modified the routine TCPd_Receive_to_BLOB toremove any checks
on the stream status before receiving over the stream; under certain
conditions when using ITK on Windows, a TCP stream could be closed
while there is still data to be received into the TCP buffer for the
stream in the plugin.

Changed the following private methods into protected methods for
use by developers:

ENV_Get TCPd_HardName_Long
ENV_Get TCPd _HardName_Short
TCPd _qi_IC

TCPd _qi ITK

Added the methods:

TCPd_Close_Stream_NoWait
TCPd_Get IPAddress_by Index_s
TCPd_Get IPAddress_s
TCPd_Get_LocalPort_by Index_s
TCPd_Get _Plugin_in_Use
TCPd_Get ProcessID_by Index_s
TCPd_Get_Protocol_by_Index_s
TCPd_Get_Status_by Index_s
TCPd_Get_Status_Direct (private method)
TCPd_Release_ Stream
TCPd_Update_Statuses_by Type_s

http://www.deepskytech.com/

TCP Deux v1.0.0

released 20010725

Changes:

First full release of the TCP Deux component. No changes were made
since TCP Deux v1.0.0b03.

http://www.deepskytech.com/

Errors

The listing of error codes and conditions is obviously a continuously
updated process. With practically every new version of TCP Deux, the
error codes and conditions can and do change. Though it has been a long
time coming, we are now documenting much of the error conditions that
can occur in TCP Deux.

Different methods in the TCP Deux component can generate errors when
used incorrectly or when used under the wrong circumstances. When an
error condition is encountered, the methods within the TCP Deux compo-
nent will call the applicable “*_ ERROR” method. The *_ERROR” methods
are documented above. The first parameter sent to an “_ERROR” method
is the error code identifying the unique error condition that occurred.

With future versions of the TCP Deux component (and other components
to come), the management and handling of error conditions will become
much better documented, much clearer to understand, and easier to han-
dle in your code. For now, though, reading this manual thoroughly is the
best single source of understanding for the error conditions that can
arise in using the TCP Deux component.

http://www.deepskytech.com/

Error Codes

When an “*_ ERROR” method is called in the TCP Deux component, the first
parameter is always an error code. This error code is always a 7 digit
integer indicating the unique error condition which was detected in the
code.

These 7 digit numbers actually consist of two pieces for uniquely iden-
tifying the error code and condition. The first five digits is an internal
code for the module which an error occured within. The last two digits
identifies the unique error condition from within a module that has been
detected.

The following is a quick listing of all of the error codes, grouped by the
module which the error codes are from. Each error code includes the
textual description of the error condition.

TCPd: 29020

01 Stream reference does not exist.

02 TCP plugin not chosen.

03 Internet ToolKit serial number(s) invalid.

04 TCP is not active. Some components may not be active.
05 4D Internet Commands error.

06 Expected a pointer.

07 Referenced value is not the correct type.

08 ITK SSL error.

09 TCP stream was not closed.

10 TCP stream is still established after close has been issued.
11 TCP protocol not valid.

12 Invalid stream reference from a TCP listen or TCP open.
13 Index out of range in TCP stack.

14 TCPp module has not been initialized.

15 Failed to lock TCPd stack.

16 Failed to mark TCPd module as initialized.

17 Stream reference already exists in stack.

18 Attempting to send an empty value.

19 TCPp module not serialized or demo period has expired.
20 Invalid range within BLOB specified.

21 Failed to initialize 4D Internet Commands plugin.

22 Internet ToolKit v2.0.x is compatible with 4D v6.7.x only.
23 Incompatible version of 4D Internet Commands being used.

24 Current plugin does not support SSL.

http://www.deepskytech.com/

Method Listing

The following is a listing of all of the methods within the TCP Deux
component (COMPILER methods are not included in this listing), includ-
ing all private methods which are not directly available in the APl when
the TCP Deux component is installed. Following each method is a list of
the error codes which each method can generate.

ENV_Get_TCPd_HardName_Long
ENV_Get_TCPd_HardName_Short
ENV_Get_TCPd_RF_FullPath

INIT_TCPd

RES_Open_TCPd

TCPd_Add_s
2902014
2902015
2902017

TCPd_Check_Serial_Full
TCPd_Check_Serial_Quick
TCPd_CloseRelease_Stream

2902002

2902005

2902009

2902010

2902014
TCPd_Close_Streams_by_Protocol

2902011

2902014
TCPd_Close_Stream_NoWait

2902002

2902005

2902009

2902014
TCPd_Copy_s

2902015
TCPd_Count_Rows_s
TCPd_Delete_s

2902001

2902014

2902015
TCPd_ERROR
TCPd_Get_DNSLookUp

2902002

2902005

2902014
TCPd_Get_DNSLookUp_Reverse

2902002

2902005

2902014
TCPd_Get_Index_by_ProcessID_s

2902014
TCPd_Get_Index_s

2902014
TCPd_Get_IPAddress_by_Index_s

2902013

2902014

http://www.deepskytech.com/

TCPd_Get_IPAddress_s

2902014
TCPd_Get_LocalPort_by Index_s
TCPd_Get_LocalPort_s

2902014
TCPd_Get_Plugin_in_Use
TCPd_Get_ProcessID_by_Index_s
TCPd_Get_ProcessID_s

2902014
TCPd_Get_Protocol_by Index_s
TCPd_Get_Protocol_Count_s

2902011

2902014
TCPd_Get_Protocol_s

2902014
TCPd_Get_Status

2902014
TCPd_Get_Status_by_Index_s
TCPd_Get_Status_Direct

2902002

2902005

2902014
TCPd_Get_Status_s

2902014
TCPd_Get_StreamRef_by_Index_s
TCPd_Get_Stream_lInformation

2902002

2902014
TCPd_Get_TCP_Info

2902002

2902005

2902006

2902007

2902014
TCPd_INIT

2902002

2902004

2902019

2902021

2902022

2902023
TCPd_Lock_Stack_s

2902014

2902015
TCPd_Open_Listener

2902002

2902005

2902012

2902014

2902019
TCPd_Open_Stream

2902002

2902005

2902012

2902014

2902019

2902024
TCPd_gi_Handler_Busy_s

2902014

http://www.deepskytech.com/

TCPd_gi_IC
2902014
TCPd_qgi_INITed
TCPd_qi_ITK
2902014
TCPd_gi_Plugin_w_SSLStreams
TCPd_qi_Protocol_w_SSL
TCPd_Receive_File
2902002
2902014
TCPd_Receive_to_BLOB
2902002
2902005
2902014
TCPd_Release_Stream
2902002
2902009
2902014
TCPd_Send_BLOB
2902002
2902005
2902014
2902018
2902020
TCPd_Send_File
2902002
2902005
2902014
TCPd_Send_Text
2902002
2902005
2902014
2902018
TCPd_Set_ProcessID_by_Index_s
2902013
2902014
2902015
TCPd_Set_Status_by_Index_s
2902013
2902014
2902015
TCPd_Unlock_Stack_s
2902014
TCPd_Update_Statuses_by_Prot_s
2902014
2902015
TCPd_Update_Statuses_by Type_s
2902014
2902015
TCPd_Wait_For_NotStatus
2902014
TCPd_Wait_For_Status
2902014

http://www.deepskytech.com/

	Software License and Limited Warranty
	Copyrights and Trademarks
	Preface
	Acknowledgements
	Features
	System Requirements
	Support

	Components
	Installing TCP Deux
	Managing Installation Conflicts
	Affix TCP Deux Document
	4D Internet Commands Plugin
	Internet Toolkit Plugin
	4D v6.8.x
	4D v7.0.x (4D v2003)

	Uninstalling TCP Deux
	Updating to TCP Deux v1.1.1

	TCP and TCP Deux Conventions
	TCPd Streams Stack
	Hosts
	IP Addresses

	Constants
	TCPd_Plugin_Types
	TCPd_Protocols

	Code Modules
	TCPd Module
	ENV_Get_TCPd_HardName_Long
	ENV_Get_TCPd_HardName_Short
	INIT_TCPd
	RES_Open_TCPd
	TCPd_Close_Stream_NoWait
	TCPd_Close_Streams_by_Protocol
	TCPd_CloseRelease_Stream
	TCPd_Copy_s
	TCPd_Count_Rows_s
	TCPd_ERROR
	TCPd_Get_DNSLookup
	TCPd_Get_DNSLookup_Reverse
	TCPd_Get_Index_s
	TCPd_Get_IPAddress_by_Index_s
	TCPd_Get_IPAddress_s
	TCPD_Get_Index_by_ProcessID_s
	TCPD_Get_LocalPort_by_Index_s
	TCPd_Get_LocalPort_s
	TCPD_Get_ProcessID_by_Index_s
	TCPd_Get_ProcessID_s
	TCPD_Get_Protocol_by_Index_s
	TCPd_Get_Protocol_Count_s
	TCPd_Get_Protocol_s
	TCPd_Get_Status
	TCPD_Get_Status_by_Index_s
	TCPd_Get_Status_s
	TCPd_Get_StreamRef_by_Index_s
	TCPd_Get_Stream_Information
	TCPd_Get_TCP_Info
	TCPd_Open_Listener
	TCPd_Open_Stream
	TCPd_qi_Handler_Busy_s
	TCPd_qi_IC
	TCPd_qi_INITed
	TCPd_qi_ITK
	TCPd_qi_Plugin_w_SSLStreams
	TCPd_qi_Protocol_w_SSL
	TCPd_Receive_File
	TCPd_Receive_to_BLOB
	TCPD_Release_Stream
	TCPd_Send_BLOB
	TCPd_Send_File
	TCPd_Send_Text
	TCPd_Set_ProcessID_by_Index_s
	TCPd_Set_Status_by_Index_s
	TCPd_Update_Statuses_by_Prot_s
	TCPd_Update_Statuses_by_Type_s
	TCPd_Wait_for_NotStatus
	TCPd_Wait_for_Status

	Version History
	TCP Deux v1.1.1
	TCP Deux v1.1.0
	TCP Deux v1.0.3
	TCP Deux v1.0.2
	TCP Deux v1.0.1
	TCP Deux v1.0.0

	Errors
	Error Codes
	Method Listing

