TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

\

"
\

=
L ¥
)
r
-..p“ - ‘

DEVELOPERS GUIDE

TMS TAdvStringGrid
Developers Guide

Productivity feature packed grid for Delphi &
C++Builder

Documentation : Jun, 2009

Copyright © 1996 - 2009 by tmssoftware.com bvba
Web: http://www.tmssoftware.com

Email : info@tmssoftware.com

1| Page

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Table of contents

TABLE OF CONTENTSuuuiiiiiiiiiiiinnniiieniiiissssssteesissssisssssesessssssssssssasessssssssssssasessssssssssssasssssssssssssssassssssssssnnnnane 2
WELCOMEcoiiiiiiiiniiitiiiiinnnniessnssssanesesssssssssansssssssssssssnnsssssssssssssannsasssssssssssnsnnsssssssssssnnnnassssssssssnnnnnsssesss 4
TADVSTRINGGRID AVAILABILITY ...uuutiiieiiiiiisssnnnneeenisisssssnsesenissssssssseeesissssssssssssessssssssssssassssssssssssssssssssssssssssssans 5
TADVSTRINGGRID DESCRIPTIONccetiiiiiiiiiinniiiiiiiiininniieieiiissennnseseiissssmmmsssessissssmmsssaesssssssmmsssssssssssssssssssees 6
TADVSTRINGGRID MAIN FEATURESccoiiiiiitiiiiiiiiiiiinnniieieniisssnniieeesissssssiseesisssssssssseesissssssssssssessssssssssssans 7
TADVSTRINGGRID USEcciiiiiiiiiinniiiiiiiiinnniieeiiiiienmieeeiiismmmsmiesesissmmssssessiissmmsssssssssssssasssssssssssssssssssees 8
TADVSTRINGGRID IMPORT & EXPORT CAPABILITIES......ccccctriiiiiinniinieiiniisinnniiieniisssnssmieeeissmmmsssiseessssmmsssse 9
TADVSTRINGGRID SORTING CAPABILITIES ...cceveiiiiiiiiiinniiiiiiiininniieiiiiisennniesensisenssseesissssmmssssssssssssmsssssees 17
TADVSTRINGGRID INPLACE EDITINGcccccciuuniiiiiiiiisinnniieeiiississnsmieesississssssesesssssssssssssssssssssssssssssssssssssssnane 25
TADVSTRINGGRID MOUSE AND NAVIGATION CONTROL.......ccovvmmmmirriiissisnnnneeniissssinsnneeenissssmssmsssessssssmssssees 45
TADVSTRINGGRID CELL AND CELL PROPERTIES ACCESS.........ccoovvummmirriiiisssnnnnneeiiissssnsnneeenissssmssmseeessssssmssnnee 51
TADVSTRINGGRID CELL GRAPHICSccovciinnniiiiiiiiiinnniieiniiiiinnniieesiiinmsssmseeesisssssssseessssssssssssssessssssssssssaee 54
USING A VERTICAL SCROLLBAR PER CELL IN TADVSTRINGGRIDccetrrirriiiirnnnniiiiiiiennniesnnnssnsesenneneees 67
TADVSTRINGGRID HTML FORMATTED CELLS.......cccccoiiumiieiriiiiiiinnnnineeiniisisnnnnneeesissssssnseeenssssssssssssessssssssssssseee 70
TADVSTRINGGRID HTML FORMES.........coiiiiininmiiiiiiiiinnniiiiiinsessssessisssssssmssssnsssssmssssessssssssssssssssssssssssssnnes 75
TADVSTRINGGRID MISCELLANEOUS DISPLAY CONTROL......cccccssummmeerinissssnnnneeensssssssnnnneeesssssssssssnnsesssssssssssnane 77
TADVSTRINGGRID NODEScccoviummriiiiiiiininnniiiiiiiiessiieesiississsiisesiisssssmssssisssssssessissssssessssssssssees 84
TADVSTRINGGRID FILTERINGcuuuuiiiiiiiiiiiinnnnieeniiiissinnnieesiiiisisssmmeesisissssssmsesesisssssssssssssssssssssssssssssssssssssssane 88
TADVSTRINGGRID GROUPINGcuetiiiiiiiicnnntiiiiniisceesiiseniisssssissesisssssssssssesnsssssssssseessssssssssssssssssssssssssssnes 94
TADVSTRINGGRID PRINTING CAPABILITIEScccevveeieeieeneeeeeneennmemmmemeesesemmmsesssssmssessssssssssmsssssssssssssssssssssssssssse. 101
TADVSTRINGGRID CLIPBOARD HANDLINGccoviiiiiunniiiiniiiisneniiieniissssiisesiissssssmssesissmmssssesssssssassse 108
TADVSTRINGGRID FLOATING FOOTER USE.........ccovviiiiiiieeneiiiinniinnineneseeeseesmessessmsssssssmssssssssssssssssssssssssssssssssee 110
TADVSTRINGGRID SEARCH PANEcooiiiieiiiiiiiniceniiieeiinsassissssssssssssssssesisssssssssssssssssssssssssssesssssssssnnnnes 113
TADVSTRINGGRID CELL MERGING........cccettiieiiieeieiinneeeetieeeeeeeeemisemmsemeessnss 116
TADVSTRINGGRID OLE DRAG & DROP.......ccciriiiiiiiiiiiiiie e sssne s ssnse s sss s s sssesssssss e ssssans e s snna s s ssnnaene 118
TADVSTRINGGRID HIDDEN COLUMNS AND ROWSccceviiiiiiiiiiniimieeeememmmmeesmmmemmsssssssmsssmsssssssssssssssssssssssssssses 121
TADVSTRINGGRID CELL FORMATTING.......ccetiieiiiiiiseeniiieniisissssiiesnisssssssmsessisssmssmssssissssssssessssssssasssees 124
TADVSTRINGGRID VIRTUAL CELLSccoeviiiiiiiiiiiiieniiiieeieeeeeeeessssemsesmeessnss 127
TADVSTRINGGRID HINTSccotiiiiiiiiiiiniiiiiiiieiiissssiisesisssssssssssesnsssssssssnssessssssssssssssesssssssssssssssssssssssnnnnnes 128
TADVSTRINGGRID SEARCH & REPLACE TEXT ...ccceiiiiiinnnnteeriiiissssnnnneesiscssssssnnneesisssssssssnaeesssssssssssssesssssssssssnaes 130
TADVSTRINGGRID DISJUNCT ROW, COLUMN AND CELL SELECTIONccmmiiiriniiinnnnniennnscssnensesennssssssnnnnnes 132
TADVSTRINGGRID CELL CHECK ARCHITECTUREcccetveeeieiinnmmnnnnennenemeennmmessmmss 134
TADVSTRINGGRID ADD-ON DIALOGScuummiieriinissnnniiieniniisssssmssenmssssssmieesissssssiseesiessssssisessiessass. 136

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TADVSTRINGGRID UNICODE SUPPORTcuuuuetititiiiininnntiteiiiisinntieesissssinssssessisssssssssssssssssssssssssssssssssannsees 137
TADVSTRINGGRID UNDO/REDO ADD-ON COMPONENTcccevseiiiiirieisinsiensisisessssssssssssssssssssssssssssssssssssssnes 139
TADVSTRINGGRID COLUMN STATE PERSISTENCEceutiiiiiiiiiiinniiiiiininnnnnnieeeinssnnnssesssssssssssesesssssssnsnnens 140
TADVSTRINGGRID IMPORT/EXPORT TO XLS FILES VIA TADVGRIDEXCELIOcccosueisunsrenssenssenssecssenssesssenssens 142
TADVSTRINGGRID EXPORT TO RTF FILES VIA TADVGRIDRTFIO.......ccottiinvimmmniiiiiinnnnnnineeiiinenieeennnnmennen, 147
USING THE ICELLGRAPHIC INTERFACE FOR CELLSovuiiiiiiniiciinniinieninssnnnnieeessssssssssseeesssssssssssesesssssssnns 148
TADVSTRINGGRID TIPS AND FAQ.....ccettiiininnmnitiiiiininnnieiiiiisnnmmteeiisimmmssmiessisissmmssmsssssssssmmssssssssssssssasssees 152

3| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Welcome

Welcome to the TAdvStringGrid Developer's Guide, created by tmssoftware.com.

At tmssoftware.com, we strive to produce world class software components that enable developers
to produce quality software for the most demanding of environments.

Our innovative component suites are designed to be extensible, easy to use and design time rich.
We provide full source code to enable seamless integration of our components with our customers'
projects.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered
trademarks of the respective owners. The publisher and the author make no claim to these
trademarks. While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for damages resulting
from the use of information contained in this document or from the use of programs and source
code that may accompany it. In no event shall the publisher and the author be liable for any loss of
profit or any other commercial damage caused or alleged to have been caused directly or indirectly
by this document.

4| Page

TMS SOFTWARE
tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE
TAdvStringGrid availability
TAdvStringGrid is available as VCL and VCL.NET component.

VCL versions:

TAdvStringGrid is available for Delphi 5,6,7,2005,2006,2007,2009 and C++Builder
5,6,2006,2007,2009 and CodeGear RAD Studio 2009.

TAdvStringGrid has been designed for and tested with: Windows 2000, 2003, 2008, XP, Vista,
Windows 7 RC build 7100.

VCL.NET versions:

TAdvStringGrid is available for Delphi 2005,2006,2007

5|Page

TMS SOFTWARE
tmssoftware.com TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid description

High productivity & feature-packed grid control.

) TMS TAdvStringGrid dema Send Feedback (1=1(: (=1 [IEce
Brand = Available Rating Picture / Models Stock Type Description -
[
=— Mercede Mercedes
— 5L BMW SL500 SLeE00 SL 65 AMG 1 z Distinctive stylistic elements -
R = such as the arrow-shaped tip of |:
— 5LR [C] Ferrari Coupe Roadster 1 |7 Coupe the Formula 1 Silver Arrow,
= establish a visual link with the
sk [E Pporsche SLK 320 SLK 55 AMG 9 [%] Roadster E| radng cars. The SLR legend of =
|— 515 Gullwin . Prototype 3 £ Sport Mercedes-Benz SL65 AMG Black .
@ Sort ascending AN Series. This new Mercedes wil K
—5 :) 3 | Sedan be their most powerful
@ e = production car ever. With the
—CLC - i TE55, | ~| Coupe double-turbocharged &.0Hiter
=— BMW
| 7 series T 730td 740i 750i 9 Incorrect value pr
Number in stock should be higher than zero. |
— 6 series MB5% = T
. = — 3-Geries compact automobile.
[— 3 series 5% (7] Image 5 |7 Sedan M3 models have been derived =
|— Z4 series | 259, BMW M3 series coupe 1 = Roadster IZ|
— Z1 series a0% : = Y 21 3.0 5 = Roadster |Z| TAdvSt rid Office hint
ngGi
=] = = = — 0w TMS TAdvStringGrid is a
B s [@ Find next] @ Find grevlous] @ Highlight] [CMatch case ==="| productivity feature packed
EE grid for Delphi &
™ = C--Builder. Editing, sorting,
export, import, printing, ...
everything you need is
included.
Press F1 for more help.

6| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid main features

e Built-in flexible printing

e Extensive capabilities for controlling display in cells
e Easy & fine control over editing & navigation

e Various file formats supported for import & export
e Wide range of built-in inplace editors

e Many types of graphics supported

e 3" party support like spell checking, scripting, ...

e And more...

7|1 Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid use

The TMS TAdvStringGrid component is designed to be used in the most broad types of applications
needing to display or handle data in rows and columns. TAdvStringGrid is designed as drop-in
replacement for the Borland TStringGrid component. As such, it is fully compatible with TStringGrid
and inherits all functionality of the base class TStringGrid. For documentation on this base
functionality, we refer to the Borland documentation. This manual therefore assumes the developer
is familiar with the functionality of TStringGrid. For example, a grid cell value can be set with
grid.Cells[col,row]: string just like in TStringGrid. The focused cell can be set with grid.Row:
integer & grid.Col: integer properties, also just like TStringGrid.

8| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid import & export capabilities

The TMS TAdvStringGrid component can save and load its data in many different formats explained
here:

internal Saves and loads grid cell data and column widths in a proprietary format

csv Saves and loads grid cell data in comma separated file

DOC Saves the cell data to a Word document through OLE automation

XLS Saves and loads grid cell data to an Excel file through OLE automation or directly

without requiring Excel to be installed on the machine with TAdvGridExcellO

XML Saves and loads the grid cell data to XML file

MDB Load the grid data from MDB file through OLE automation®

ASCII Saves cell data to ASCII file

Fixed Saves and loads the cell data to fixed length column text files

BIN Saves and loads cell data and properties to a proprietary binary format
HTML Saves the cell data to a HTML file

stream Saves and loads cell data to a stream

Binary stream | Saves and loads cell data and properties to a stream

RTF Saves the grid as rich text file

Properties that have effect on grid saving and loading are:

SaveFixedCells: Boolean

When true, the contents of fixed cells are also saved and loaded. Default value is true.
SaveHiddenCells: Boolean

When true, the contents of hidden cells are saved. Default value is false.
SaveWithHTML: Boolean

When false, all HTML tags are removed from cell contents if these have HTML tags. Default value is
true.

SaveWithRTF: Boolean

When true, RTF information is saved along the cell value. When false, all text formatting is removed
before saving the cell value.

SaveVirtCells: Boolean
When true, the displayed value of a cell is save. When false, the real grid cell value is saved. As

9| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

explained further in this guide, a grid cell value can be dynamically altered for display using the
OnGetDisplText event. With this public property SaveVirtCells, it can be choosen which value will be
saved.

OnFileProgress: TGridProgressEvent(Sender:TObject;progress: smallint);

This event is triggered to return the percentage of completion during save and load operations.

Overview of methods

Files
procedure SaveToFile (FileName: String);
procedure LoadFromFile (FileName: String);

SaveToFile saves cell data and column widths to a proprietary file format. LoadFromFile loads cell
data and column widths from a proprietary file format.

Binary files
procedure SaveToBinFile (FileName: String);
procedure LoadFromBinFile (FileName: String);

SaveToBinFile saves cell data and cell properties to a proprietary file format. LoadFromBinFile loads
cell data and cell properties from a proprietary file format.

Streams
procedure SaveToStream(Stream: TStream) ;
procedure LoadFromStream(Stream: TStream) ;

SaveToStream saves cell data and column widths to a stream. LoadFromStream loads cell data and
column widths from a stream.

Example: copying grid information from grid 1 to grid 2 through a memorystream:

var
ms: TMemoryStream;

begin
ms := TMemoryStream.Create;
Gridl.SaveToStream (ms) ;
ms.Position := 0; // reset stream pointer to first position
GridZ?.LoadFromStream (ms) ;
ms. Free,
end,

Binary streams

procedure SaveToBinStream(Stream: TStream) ;
procedure LoadFromBinStream (Stream: TStream) ;

10| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

procedure SaveRectToBinStream (Rect: TRect; Stream: TStream);
procedure LoadAtPointFromBinStream(Point: TPoint; Stream: TStream);

SaveToStream saves cell data and cell properties to a binary stream. LoadFromStream loads cell
data and cell properties from a binary stream. SaveRectToBinStream saves only cells with in
rectangle coordinates specified through the Rect parameter. Finally, the method
LoadAtPointFromBinStream loads cell data and cell properties from the binary stream starting from
the specified cell coordinate as first top left cell of the data loaded.

CSV files

procedure SaveToCSV (FileName: String);

procedure LoadFromCSV (FileName: String; MaxRows: integer= -1);
procedure AppendToCSV (FileName: String);

procedure InsertFromCSV (FileName: String; MaxRows: integer= -1);

SaveToCSV saves cell data to a CSV file. LoadFromCSV loads cell data from a CSV file. AppendToCSV
appends cell data to an existing CSV file. InsertFromCSV inserts cell data loaded from the CSV file as
extra rows in the grid. Note that LoadFromCSV & InsertFromCSV have a default parameter MaxRows.
Without this parameter, all rows in the CSV file are loaded in the grid. When the 2" parameter
MaxRows is used, this sets the maximum number of rows that will be loaded.

Several properties affect the CSV methods:
Grid.Delimiter: Char;

This specifies the delimiter to use for saving and loading with CSV files. By default the Delimiter is
set to #0. With Delimiter equal to #0, an automatic delimiter guess is used to load data from the
CSV file. To save to a CSV file, the ; character is used as separator when delimiter is #0. Setting the
delimiter to another character than #0 forces the CSV functions to operate with this delimiter only.

Grid.QuoteEmptyCells: Boolean;

«“”»

When true, an empty cell in the CSV file is saved as “”, otherwise no characters are written to the

CSV file.

Grid.AlwaysQuotes: Boolean;

When true, every cell value is saved with prefix and suffix quotes, otherwise quotes are only used if
the cell data contains the delimiter character. Note that when the cell data contains quotes, the
data is written with doubled quotes to the file.

Fixed files
procedure SaveToFixed (FileName: string;positions: TIntList);

procedure LoadFromFixed (FileName:string;positions:TIntList; DoTrim: boolean
= true; MaxRows: integer = -1);

SaveToFixed saves cell data and column widths to a text file with fixed column lengths.
LoadFromFixed loads cell data and column widths from a text file with fixed column lengths. The
TIntList parameter is a list of integer values specifying the character offsets where a column starts
in the file. TintList is defined in the AdvObj unit, so to use this, include AdvObj in the uses clause of
your form .PAS file.

1M |Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Example: loading from a fixed file

var
Il: TIntList;
begin
I1 := TIntList.Create(0,0);
I1.Add (0) ; // first column offset

I1.Add(15); // second column offset
I1.Add(30),; // third column offset
I1.Add(40),; // fourth column offset
Grid.LoadFromFixedFile ('myfile.txt’,1il) ;
Il.Free;

end;

Note that LoadFromFixed has two additional default parameters: DoTrim & MaxRows. When DoTrim
is false, spaces before or after words are not removed. Without MaxRows, all rows in the text file
are loaded in the grid. When the last parameter MaxRows is used, this sets the maximum number of
rows that will be loaded.

HTML files

procedure SaveToHTML (FileName: String) ;
procedure AppendToHTML (FileName: String);

SavetoHTMLFile saves the cell data to a HTML file and uses the grid. HTMLSettings to control the
method for saving. The cell data is saved to a HTML table. AppendToHTML appends the cell data to
an existing HTML file.

With HTMLSettings, following settings can be done:

property BorderSize: Integer Sets the border size for the HTML table

property CellSpacing: Integer Sets the cellspacing value for the HTML table

property CellPadding: Integer Sets the cellpadding value for the HTML table

property SaveColor: Boolean If true, grid color information is written to the HTML table
cells

property SaveFonts: Boolean If true, grid font information is written to the HTML table
cells

property FooterFile: string File that is to be appended after the HTML table in the
final HTML file

property HeaderFile: string File that is inserted before the HTML table in the final
HTML file

property TableStyle: string Sets additional HTML table style properties

property PrefixTag: string Sets any text that should be written in the HTML file
before the table is output

12| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

property SuffixTag: string

Sets any text that should be written in the HTML file after
the table is output

property ConvertSpecialChars: Boolean

When true, special characters as >, <, & ... are exported
as respectively > , < , & ...

property NonBreakingText: Boolean

When true, all text is exported as non breaking text, ie.
all spaces are exported as

property Summary: string

Sets the HTML TABLE summary attribute for the exported
grid

property AutoPreview: Boolean

When true, the exported HTML file is automatically
previewed in an instance of the default browser

property Exportimages: Boolean

When true, images in the grid are also exported

property Width: Integer

Sets the width percentage of the HTML table

property XHTML: Boolean

When true, the output is xHTML compatible

HTML Settings ==
General: Cells:
T able Width [in percent, 10 2 Border §ize: 1 s
Use Table's Calars CellSpacing: |0 12
Usze Table's Fants
] Corwert special characters Cell Padding: 0 o
] Export as non breaking test
Tags:
] &ute show output .
Prefix Tags:
Files: Suffix Tags:
Header E] Table Style Tags:
Footer:
’ Freview] [Ok] [Cancel]

XML files

procedure SaveToXML (FileName: String; ListDescr,

RecordDescr:string;FieldDescr:TStrings) ;

Saves the cell data in an XML file with following structure:

<ListDescr>

<RecordDescr>

<FieldDescr[0]>Cell 0,0</FieldDescr[0]>

<FieldDescr[1]>Cell 1,0</FieldDescr[1]>

<FieldDescr[2]>Cell 2,0</FieldDescr[2]>

</RecordDescr>

13| Page

TMS SOFTWARE
tmssoftware.com TADVSTRINGGRID
DEVELOPERS GUIDE
<RecordDescr>
<FieldDescr[0]>Cell 0,1</FieldDescr[0]>
<FieldDescr[1]>Cell 1,1</FieldDescr[1]>
<FieldDescr[2]>Cell 2,1</FieldDescr[2]>
</RecordDescr>
</ListDescr>

procedure LoadFromXML (FileName: String; LevelToRow: Boolean = false);

Loads the grid data from an XML file. When the optional LevelToRow parameter is true, a new row
is used for every new XML node level, otherwise, XML nodes are added in additional columns.

Example:

This code snippet save a grid with 5 columns to XML and uses the text in the column headers as field
descriptors in the XML file:

var
sl: TStringList;
i: integer;

begin
sl := TStringList.Create;
for i := 0 to grid.ColCount - 1 do

sl.Add (grid.Cells[I,0]);
grid.SaveToXML (‘mygrid.xml’, ‘xmllist’, ‘xmlrecord’, sl);
sl.Free;
end;

ASCII files
procedure SaveToASCII(FileName: String);

SaveToASCIl saves the cell data to an ASCII file, automatically using column widths to fit the widest
data in cells available. A difference with fixed column width files is also that SaveToAscii will
correctly split cell contents across multiple lines when MultiLineCells is set True.

procedure AppendToASCII (FileName: String);

This procedure is identical to SaveToASCII, except that it appends the data to an existing file.

Access files

procedure LoadFromMDB (FileName:string; Table: string);

procedure LoadFromMDBSQL (FileName:string; SQL: string);

14| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

LoadFromMDB loads data from a table in an Access MDB file. All rows and columns are loaded in the
grid. LoadFromMDB relies on ADO and as such requires that ADO is installed on the machine.
LoadFromMDBSQL loads data from an Access table with a SQL SELECT command. Note that
LoadFromMDB is equivalent to LoadFromMDBSQL with the SELECT statement:

SELECT * from TABLE

Microsoft Word files
procedure SaveToDoc (FileName: string; CreateNewDocument: boolean = true);

This procedure saves the grid data as a table in a MS Word document. By default, this is in a new
document. When the parameter CreateNewDocument is true, a new document is explicitely
created, when false, the table will be saved in the default active Word document.

procedure AppendToDoc (FileName, Bookmark: string);

Call grid.AppendToDoc(FileName) to add the grid data to an existing MS Word document at the end
of a document. To insert the grid data at a specific bookmark present in the MS Word document,
call grid.SaveToDoc(FileName, BookmarkName);

Microsoft Excel files

TAdvStringGrid supports importing & exporting Microsoft Excel files in two ways. With the methods
grid.LoadFromXLS, grid.SaveToXLS, the grid imports & exports XLS files using OLE automation.

Secondly, a separate component TAdvGridExcellO offers native import & export without requiring
that Excel is installed on the machine. It is highly recommended to use TAdvGridExcellO as it is
significantly faster, has more features and does not require Microsoft Excel to be installed.

Using SaveToXLS / LoadFromXLS

procedure SaveToXLS (Filename:string; CreateNewSheet: boolean = true);
procedure SaveToXLSSheet (Filename, Sheetname:string) ;

Using these methods, the grid contents are saved to a worksheet in the XLS file, either a default
worksheet when SaveToXLS(filename) is used, forced to a new worksheet with SaveToXLS(filename,
true) or saved to a specific named worksheet when calling SaveToXLSSheet(Filename, Sheetname);

procedure LoadFromXLS (Filename:string) ;
procedure LoadFromXLSSheet (Filename, SheetName:string);

LoadFromXLS loads data from the default worksheet in the grid. With LoadFromXLSSheet, data from
the named worksheet is loaded.

Using TAdvGridExcellO

15| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

This is explained in a separate chapter: TAdvStringGrid import/export to XLS via TAdvGridExcellO

RTF files

Via a separate component TAdvGridRTFIO, it is possible to save contents of the grid as RTF file. This
is a Microsoft Word compatible RTF file with a table that contains the grid data. Using
TAdvGridRTFIO is explained in the separate chapter: TAdvStringGrid export to RTF files via
TAdvGridRTFIO.

Advanced topics on exporting & importing

To apply transformations on cell data for loading and saving it is easy to create a descendent class
from TAdvStringGrid and override the SaveCell and LoadCell methods. In these overridden methods
a transformation such as encryption or decryption can be applied. The basic technique is:

TEncryptedGrid = class (TAdvStringGrid)
protected
function SaveCell (ACol,ARow: Integer) :string; override;
procedure LoadCell (ACol,ARow: Integer; Value: string); override;
end;

function TEncryptedGrid.SaveCell (ACol,ARow: Integer): string;
begin

Result := Encrypt (GridCells[ACol,ARow]) ;
end;

procedure TEncryptedGrid.LoadCell (ACol,ARow: Integer; Value: string);
begin

GridCells[ACol,ARow] := Decrypt (Value);
end;

As such, when using methods like SaveToCSV, SaveToXLS, ... the information will be exported in
encrypted format automatically.

16 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid sorting capabilities

TAdvStringGrid supports various ways to sort data inside the grid. Sorting can be triggered by a
mouse click on a column header or programmatically with various methods. The settings that
control the behaviour of sorting in the grid are grouped in the SortSettings property. In addition, the
OnGetFormat event is used to dynamically instruct the grid to the data type to use for the sort. By
default, sorting on a given column starts comparing cells for the sort for the given column but upon
finding equal cells, will use columns right from the main sort index column to do further comparing.

SortSettings

The settings that control the various sorting capabilities of TAdvStringGrid can be found under the
property SortSettings. This contains following subproperties:

AutoColumnMerge: Boolean; When true, merged cells in multiple columns are taken
into account for sorting. Cell merging is explained in
detail later.

AutoFormat: Boolean; When true, the grid tries to automatically guess the

format of the data in cells for the compare method

AutoSortForGrouping: Boolean When true, the grid is automatically sorted first before
a grouping is performed. The sorting is performed on
the column for which the grouping will be applied.

BlankPos: TSortBlankPosition; Sets the position empty cells get after sorting. This can
be either blFirst or blLast, specifying empty cells
should always come first or come last after sorting

Column: Integer; Specifies the main sort index column

Direction: TSortDirection; Sets the sort direction to either ascending or
descending

DownGlyph: TBitmap; Specifies the glyph to use for indicating a descending

sort. If no glyph is specified a triangle is drawn.

FixedCols: Boolean; When true, fixed columns are affected by the sort,
otherwise, fixed columns remain in the original
sequence after the sort.

Full: Boolean; When true, all columns are taken into account for
comparing from left to right, starting from the main
sort index column

HeaderColor: TColor; When different from clNone, the fixed column header
cell can be painted in a different color for the column
that is sorted. HeaderColor sets the top gradient start
color.

HeaderColorTo: TColor; Idem as HeaderColor but sets the top gradient end
color.

17 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

HeaderMirrorColor: TColor;

Idem as HeaderColor but sets the bottom gradient start
color.

HeaderMirrorColorTo: TColor;

Idem as HeaderColor but sets the bottom gradient end
color.

IgnoreBlanks: Boolean;

When true, empty cells are ignored during the sort and
can be positioned in the sort either at top or at bottom

IgnoreCase: Boolean;

When true, case sensitivity is automatically ignored
when performing the sort.

IndexColor: TColor;

Sets the color of the indexed sort indicators

IndexDownGlyph: TBitmap;

Specifies the glyph to use for indicating an descending
indexed sort. If no glyph is specified a triangle is
drawn.

IndexShow: Boolean;

When true, sorting on an arbitrary column sequence is
enabled and the indexes of this sequence displayed

IndexUpGlyph: TBitmap;

Specifies the glyph to use for indicating an ascending
indexed sort. If no glyph is specified a triangle is
drawn.

InitSortDirection: TSortDirection

Specifies the initial sort direction. The initial sort
direction is the direction of the sort upon the first
column header click on an unsorted column. After the
first sort, the sort direction toggles for every click.

NormalCellsOnly: Boolean;

When true, sorting is applied to normal, i.e. non fixed
cells only.

Row: Integer;

Sets the fixed row where the sort indicator is displayed
and from where a column header click triggers the
sort. Maximum value for row is the number of fixed
rows in the grid.

Show: Boolean;

When true, the sort indicator is shown in the column
header cell

SingleColumn: Boolean;

When true, only a single column is sorted. All other
columns are not affected

SortOnVirtualCells: Boolean;

When true, the sorting is performed on cell text set by
OnGetDisplText instead of the internal grid data. This
is the default setting as the sort will correspond to
what can be visibly seen in the grid.

UndoSort: Boolean;

When true, a sort undo is possible. This means that
upon clicking on the header, the sorting toggles
between ascending, descending and back to unsorted.
The unsorted sequence is considered as the sequence

18| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

before the first sort was performed.

UpGlyph: TBitmap; Specifies the glyph to use for indicating an ascending
sort. If no glyph is specified a triangle is drawn.

Specifying the dataformat with OnGetFormat

The OnGetFormat event is used to instruct the grid which compare method it should use during the
sorts for each column in the grid. By default, the grid is using an automatic format guess. This
means that the grid checks if the data in a cell is numeric, a floating point, a date, a date + time or
just alphabetic data and applies the appropriate compare methods accordingly. Although this auto
format guess can be convenient, for sorting large and complex amounts of data it is not
recommended. When mixed numeric and alphabetic data is available in a column, this auto format
guess is easily confused and the extra checks for guessing the format take extra time. With the
OnGetFormat event, the compare methods to use can be specified for each column. The event is
declared as:

TGridFormatEvent = procedure (Sender : TObject; ACol: Integer;

var AStyle:TSortStyle; var aPrefix,aSuffix:string) of object;

The TSortStyle can be:

ssAlphabetic Use alphabetic compare

ssAlphaCase Use case sensitive alphabetic compare

ssAlphaNoCase Use case insensitive alphabetic compare

ssAlphaNumeric Use combined alphabetic & numeric compare, ie. 1,5,100,A,M,K,a,r,z...
ssAlphaNumericNoCase | Use combined alphabetic & numeric compare without case sensitivity
ssAnsiAlphaCase Use Ansi case sensitive alphabetic compare

ssAnsiAlphaNoCase Use Ansi case insensitive alphabetic compare

ssAutomatic Let grid automatically determine the format of data for comparing
ssCheckBox Use checkbox value compare

ssCustom Use custom compare method (explained later)

ssDate Use date compare

ssDateTime Use both date & time compare

ssFinancial Use floating point with optionally thousand separator compare
ssHTML Use HTML compare, ignoring HTML tags in text for compare

sslmages Use image index compare

19| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

ssNumeric Use numeric compare

ssRaw Use raw compare method (explained later)
ssShortDateEU Use fixed date format dd/mm/yyyy compare
ssShortDateUS Use fixed date format mm/dd/yyyy compare
ssTime Use time compare

ssUnicode Use Unicode string compare (pre Delphi 2009 only)

The last parameters aPrefix and aSuffix, are use to instruct the grid to ignore fixed prefix or suffix
text for cell data for the compare. As such, the sort format can be ssNumeric while a cell contains
numeric data with some characters before or after the number as in the following example:

1234 USD
5678 USD

Setting aSuffix to ‘ USD’ will let the compare ignore this suffix and perform a compare only on

1234
5678

Example: setting sort formats with OnGetFormat

Supposing a grid contains following data:

Abc 123 1/1/1980 $1.025,36
Def 456 12/10/1990 $ 958,14
Ghi 789 15/4/200 $2.175,00

The OnGetFormat event is used to instruct the grid to use an alphabetic compare for the first
column, a numeric compare for the second column, a date compare (based on regional settings for
date format) for the third column and finally the fourth column to ignore the ’$ ¢ prefix and sort on
floating point data with optional thousand separator.

procedure TForml.AdvStringGridlGetFormat (Sender: TObject; ACol: Integer;
var AStyle: TSortStyle; wvar aPrefix, aSuffix: String);

begin

case ACol of

0: AStyle := ssAlphabetic;

1: AStyle := ssNumeric;

2: AStyle := ssDate;

3: begin
AStyle := ssFinancial;
APrefix := 'S ';

20| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

end;
end;
end;

Sort events

Two events are triggered when sorting is started by a click on a column header. Before the sort
starts, the OnCanSort event is triggered. By setting the parameter DoSort to false, a sort after a
column header click can be disabled. After the sort is completed, the OnClickSort event is
triggered, informing the completion of the sort for a given column. As OnCanSort is triggered before
the sort and OnClickSort after the sort, these two events are often used to specify an hourglass
cursor during lengthy sort processes:

procedure TForml.AdvStringGridlCanSort (Sender: TObject; ACol: Integer;
var DoSort: Boolean);

begin
Cursor := crHourGlass;
end;

procedure TForml.AdvStringGridlClickSort (Sender: TObject; ACol: Integer);
begin

Cursor := crDefault;
end;

Custom sorts

Two events, OnCustomCompare and OnRawCompare are used to allow implementing custom
compare routines when the sort format style is specified as ssCustom or ssRaw. The
OnCustomCompare is triggered for each compare of two string values and expects the result to be
set through the Res parameter with values :

-1 Str1 < Str2
0 Str1 = Str2
1 Str1 > Str2

The OnRawCompare event is defined as:

TRawCompareEvent = procedure (Sender:TObject; ACol,Rowl,Row2: Integer;
var Res: Integer) of object;

It allows comparing grid cells [ACol,ARow1] and [ACol,ARow2] in any custom way and returning the
result in the Res parameter in the same way as for the OnCustomCompare event.

Example: comparing cell objects instead of cell text with OnRawCompare

As for each cell, an object can be assigned with the grid.Objects[Col,Row]: TObject property, it is
easy to associate a number with each cell through:

21| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Grid.Cells[Col,Row] := ‘I am text’; // cell text
Grid.Objects[Col,Row] := TObject(1234); // associated number

Through the OnRawCompare event, a sort can be done on this associated number instead of the cell
text.

procedure TForml.AdvStringGridlRawCompare (Sender: TObject; ACol, Rowl,
Row2: Integer; var Res: Integer);

var
cl,c?2: Integer;

Begin
cl := integer (AdvStringGridl.Objects[ACol,Rowl]) ;
c2 := integer (AdvStringGridl.Objects[ACol,Row2]) ;
if (¢l = c2) then
Res := 0
else
if (¢l > c¢2) then
Res := 1
else
Res := -1;

end;

Sort independent cell access

TAdvStringGrid has the capability to access cell contents with a row index irrespective of sort order.
In order to use this functionality, three methods are available:

procedure InitSortXRef;
function SortedRowIndex (Row: Integer): Integer;
function UnsortedRowIndex (Row: Integer): Integer;

The InitSortXRef method initializes the current row indexing as reference. This means that if value
“ABC” is on row 10, after sorting the grid in whatever sort sequence, you can access the cell with
contents “ABC” on reference row 10. After calling grid.InitSortXRef, sorting can be applied
programmatically or from user interface and conversion between displayed row index an reference
row index can be done by the methods: SortedRowIndex and UnsortedRowlIndex.

SortedRowlIndex converts the reference row index to the displayed row index.

UnsortedRowlIndex converts the displayed row index to the reference row index.

In addition, the following property also provide direct access to the reference row indexed cells:
Grid.UnSortedCells[Col,Row]: string;

Example: using SortedRowlIndex and UnsortedRowlIndex

// loading, initializing & sorting

Grid.SaveFixedCells := False;

22 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Grid.LoadFromCSV (‘sample.csv’);
Grid.InitSortXRef;

Grid.SortSettings.Column := 1;
Grid.QSort;

// shows the contents of cell 1,1 before sorting
ShowMessage (Grid.UnsortedCells[1,1]);
// shows the display index for the reference row indexed cell 1,1

ShowMessage (IntToStr (Grid.SortedRowIndex (1)) ;

Programmatic sorting control

Programmatically invoking a sort is possible with the method grid.QSort. First set the properties for
the sort through the property SortSettings and call grid.QSort. Calling grid.QSort performs the sort
on column set by grid.SortSettings.Column for all normal rows in the grid. In addition
TAdvStringGrid also supports grouped sorting. Grouped sorting will sort only rows that belong to the
same group. It is invoked by first setting the column in SortSettings.Column and calling
grid.QSortGroup. More information on grouping can be found in the paragraph for grouping
specifically. Finally, it is also possible to programmatically undo a sort. This is done with the
method grid.QUnSort.

Programmatic control of custom sort column sequences

With TAdvStringGrid, it is possible to apply programmatic sorts in any column order. This is
achieved through the property grid.SortIndexes (which is a list of column indexes to be sorted) and
the method grid.QSortIndexed. Sortindexes is a list of column indexes. Column indexes can be
added with methods: grid.Sortindexes.Add(Colindex: Integer) or
grid.SortIndexes.AddIndex(Colindex: Integer; Ascending: Boolean); It is important that when
applying a new column sort order, to clear the previous list of indexes (if assighed) with
grid.SortIndexes.Clear;

Example: using QSortindexed

Grid.SortIndexes.Clear;

// first column to sort is column 5 in ascending order
Grid.SortIndexes.Add (5, true) ;

// second column to sort is column 2 in descending order
Grid.SortIndexes.Add (2,false) ;

// third column to sort is column 4 in ascending order
Grid.SortIndexes.Add (4, true) ;

Grid.QSortIndexed,

Note: when grouping is enabled in the grid, use the methods QSortGroup and QSortGrouplndexed
which are further explained under grouping.

Ignoring columns during sorting

By default, when grid.SortSettings.Full = true, all columns are possibly taken in account to perform
the sort, ie. when two values in a column are equal, the values in the next column are compared to
determine the order. It is possible to define one or more columns that should be ignored for

23 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

comparing during a sort. This is simply done by setting column indexes in the list
grid.lgnoreColumns.

Example:

grid.IgnoreColumns.Clear; // clear any previous set ignored columns
grid.IgnoreColumns.Add (2); // ignore column 2 during sort
grid.IgnoreColumns.Add (5); // ignore column 5 during sort

Persisting sort settings

Often it is desirable to persist the sorting a user has applied during execution of the application to
be able restore this last sort setting when the application restarts. TAdvStringGrid provides a
convenient way to handle this. The TSortSettings class features for this the methods:

TSortSettings.SaveToString: string;
TSortSettings.LoadFromString (const Value: string);

This way, when the application closes, the result of grid.SortSettings.SaveToString can stored in the
registry, an INI file, XML file or other storage and when the application starts, the last sort sequence
is restored by loading this value and applying it with:

var
s: string;

begin
s := IniFile.ReadString (‘GRID’,’”SORT’,"");
Grid.SortSettings.LoadFromString(s) ;

end;

24| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid inplace editing

TAdvStringGrid not only offers a huge range of built-in inplace editor types but can be extended to
use any TWinControl based component as inplace editor.

By default, when setting goEditing = true in grid.Options, the editing is enabled and the default
inplace editor is used. In code, editing can be enabled with:

Delphi:
advstringgridl.Options := advstringgridl.Options + [goEditing];

C++
advstringgridl->Options << goEditing;

The normally used editor is set by grid.DefaultEditor and is by default a normal TEdit like inplace
edit with no special features. Additional inplace editors are specified through the OnGetEditorType
event. If goEditing is set true, all non fixed cells in the grid can be edited. To set some cells as
read-only in this case, the OnCanEditCell event is used. The OnCanEditCell event is triggered before
editing should start and editing can be stopped by setting the CanEdit parameter to false.

Example: setting a column to read-only
This event handler sets column 2 and 4 as read-only:

procedure TForml.AdvStringGridlCanEditCell (Sender: TObject; ARow,
ACol: Integer; var CanEdit: Boolean) ;

begin
CanEdit

end;

not (ACol in [2,4]);

Alternatively, a cell can also be set as readonly with properties. To do this, following code can be
used:

Delphi:

advstringgridl .ReadOnly[col, row] := true;
C++

advstringgridl->ReadOnly[col] [row] = true;

Example: using the OnGetEditorType event

This event specifies which inplace editor to use for columns 1-4.

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; wvar AEditor: TEditorType);

begin
case ACol of
1: AEditor := edNumeric;
2: AEditor := edComboEdit;
3: AEditor := edSpinEdit;
4: AEditor := edRichEdit;

25| Page

TMS SOFTWARE
tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE
end;
end;

TEditorType is defined as :

TEditorType = (edNormal, edSpinEdit, edComboEdit, edCombolList, edEditBtn, edCheckBox,
edDateEdit, edDateTimeEdit, edDateEditUpDown, edTimeEdit,edButton, edDataCheckBox,
edNumeric, edPositiveNumeric, edFloat, edCapital, edMixedCase, edPassword, edUnitEditBtn,
edLowerCase, edUpperCase, edFloatSpinEdit, edTimeSpinEdit, edDateSpinEdit, edNumericEditBtn,
edFloatEditBtn, edCustom, edRichEdit, edUniEdit, edUniEditBtn, edUniComboEdit, edUniCombolList,
edUniMemo,edValidChars);

With:

edButton Button

edCapital Edit with all capitalized text only
edCheckBox Checkbox

edCombokEdit

Editable combobox

edCombolList Non-editable combobox

edCustom Custom edit control (see advanced topics for editing)
edDataCheckBox Checkbox with check value dependent on cell text
edDateEdit Datepicker

edDateEditUpDown

Date edit with up/down buttons

edDateSpinEdit

Date spin edit control

edDateTimeEdit

Date + time edit

edEditBtn

Edit control with button attached

edFloat

Edit allowing floating point data only

edFloatEditBtn

Floating point only edit control with button attached

edFloatSpinEdit

Floating point spin edit control

edLowerCase Edit with all lowercase entry
edMixedCase Edit with automatic first capital letter
edNormal Normal inplace edit

edNumeric Edit allowing signed numeric data only

edNumericEditBtn

Numeric only edit control with button attached

edPassword

Edit in password style

26 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

edPositiveNumeric Edit allowing unsigned numeric data only

edRichEdit Rich text editor

edSpinkEdit Spin edit control

edTimeEdit Time edit

edTimeSpinEdit Time spin edit control

edUniComboEdit Unicode editable combobox

edUniCombolList Unicode non editable combobox

edUniEdit Unicode edit

edUniEditBtn Unicode edit with button attached

edUniMemo Unicode multiline edit

edUnitEditBtn Edit control with unit selection and button attached

edUpperCase Edit with all uppercase entry

edValidChars Accept only keys that are part of the value set with property
grid.ValidChars

Normal editor

With a normal cell edit control, any characters can be entered. If grid.MaxEditLength > 0, then the
length of the characters to enter in a cell is limited to grid.MaxEditLength. With
grid.MaxEditLength, the string length of a cell is limited only by the length of a string type. The
maximum input length can be set different from different columns using the OnGetEditorType event
that is triggered before editing starts, ie:

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);

begin
case ACol of
1: AdvStringGridl.MaxEditLength := 8;
2: AdvStringGridl.MaxEditLength := 16;
else

AdvStringGridl.MaxEditLength := 0;

end;

end;

For column 1, max. length of input is 8 characters, for column 2 it is 16 characters and other

columns do not have length limitations.

Masked editors

27 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid inherits the behaviour to be able to work with masked inplace editors from
TStringGrid. The edit mask is set through the OnGetEditMask event triggered before editing starts.
This allows to set the edit mask for a given cell through the Value parameter.

Example: setting an edit mask for time editing in column 1

procedure TForml.AdvStringGridlGetEditMask (Sender: TObject; ACol,
ARow: Integer; wvar Value: String);

begin
if (ACol = 1) then
Value := '"!90:00;1; "';
end;

Spin editors

The inplace spin edit control is exposed through the property grid.SpinEdit. This allows access to
additional spin edit properties that control its behaviour. The most useful properties are:

property EditorEnabled: Boolean;

When true, the value is only editable by using the spin up & down buttons.
property Increment: Longint;

Sets the increment step for integer values.

property IncrementFloat: Double;

Sets the increment step for floating point values.

property MaxLength;

Sets the maximum length (in characters) of the value that can be entered.
property MaxValue: LongInt;

property MinValue: LongInt;

property MinFloatValue: Double;

property MaxFloatValue: Double;

property MinDateValue: TDateTime;

property MaxDateValue: TDateTime;

Sets the minimum & maximum values that can be entered in the various modes.

Example: setting spin editors with two different ranges in two different columns

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; wvar AEditor: TEditorType) ;

begin

case ACol of
1:begin

28| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

AEditor := edSpinEdit;

AdvStringGridl.SpinEdit.MinValue := 1;

AdvStringGridl.SpinEdit.MaxValue

AdvStringGridl.SpinkEdit.Increment := 2;
end;

Il
—
o
o
~

2 :begin
AEditor := edSpinEdit;
AdvStringGridl.SpinEdit.MinValue := 1;
AdvStringGridl.SpinkEdit.MaxValue := 1000;
AdvStringGridl.SpinEdit.Increment := 10;
end;
end;

end;

The spin edit controls trigger following events when the up/down buttons are clicked:
OnSpinClick: TSpinClickEvent;

OnFloatSpinClick: TFloatSpinClickEvent;

OnTimeSpinClick: TDateTimeSpinClickEvent;

OnDateSpinClick: TDateTimeSpinClickEvent;

The spin click events return the current value of the spin edit control and whether the up or down
button was pressed.

TSpinClickEvent = procedure (Sender:TObject;ACol, ARow,
AValue: Integer; UpDown: Boolean) of object;

Note: by default, spin editor up/down buttons are visible when the inplace editor is active, ie. for
only one spin editor at a time. If it is desirable that spin editor buttons are continuously visible, this
can be enabled by setting : grid.ControlLook.SpinButtonsAlwaysVisible = true.

Combobox editors

Two types of comboboxes can be used: an editable combobox and not-editable combobox. While
the inplace combobox is exposed by grid.Combobox, additional methods are defined to control the
items displayed in the combobox dropdown list and selected item:

procedure ClearComboString;

Removes all items from the inplace combobox editor.

procedure AddComboString(const s: string);

Adds a single item to the inplace combobox editor.

29| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

procedure AddComboStringObject (const s: string; AObject: TObject);

Adds a string + object to the inplace combobox editor.

function RemoveComboString(const s: string): Boolean;

Removes a single string value from the inplace combobox editor.

function SetComboSelectionString(const s: string): Boolean;

Sets the selected item of the combobox by string value.

procedure SetComboSelection (idx: Integer);

Sets the selected item of the combobox by index.

function GetComboCount: Integer;

Returns the number of items in the combobox.
Through these methods, combobox items can be preset in different ways for different cells.

Example: presetting combobox items for different columns

In this example, an editable combobox is set for column1 with values Berlin,Paris,London,New York
and in the second column a non-editable combobox with countries is used:

procedure TForml.gridGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);

begin

case ACol of

1:begin
AEditor := edComboEdit;
grid.ClearComboString;
grid.AddComboString ('Berlin') ;
grid.AddComboString ('Paris'");
grid.AddComboString ('London'") ;

(

grid.AddComboString ('New York');
end;
2:begin
AEditor := edComboList;

grid.ClearComboString;
grid.AddComboString ('Germany') ;
grid.AddComboString ('France');
grid.AddComboString ('United Kingdom') ;
grid.AddComboString ('United States');
end;
end;
end;

30| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

As the grid also exposes the ComboBox inplace editor directly, an alternative approach to specify
the combobox items could be:

procedure TForml.gridGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);

begin
case ACol of
1:begin
AEditor := edComboEdit;
grid.Combobox.Items.Assign (StringListl);
end;
2:begin
AEditor := edComboList;
grid.Combobox.Items.Assign (StringList?2) ;
end;
end;
end;

with StringList1 and StringList2 two string list objects that hold the items that should be displayed
in the combobox when editing respectively column 1 and column 2.

Note that when the combobox inplace editor is displayed for the first time, its selected item is set
to the item that matches the content of the cell being edited. If the cell is empty before being
edited for the first time, the combobox editor will start with the first item in the list for the type
edCombolList and it will start with an empty value for the edComboEdit type. To override this
behavior and ensure that a specific value is set by default, use the OnGetEditText event that is
triggered to query the value used by the inplace editor.

In this sample code, the OnGetEditText is used in combination with the OnGetEditorType event to
ensure that when the combobox editor is started, it is preset to value “Paris” when the cell is
empty:

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);
begin
AEditor := edComboEdit;
AdvStringGridl.ClearComboString;
AdvStringGridl.AddCOmboString ('Paris’');
Advstringgridl .AddCOmboString ('Berlin');
AdvStringGridl .AddCOmboString ('London') ;
AdvStringGridl .AddComboString (
end;

'Amsterdam') ;

procedure TForml.AdvStringGridlGetEditText (Sender: TObject; ACol, ARow:
Integer;
var Value: string);
begin
if Value = '' then
Value := 'Paris';

31| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

end;

The combobox triggers three events:

OnComboCloseUp: TClickCellEvent;

Event triggered when the combobox dropdown is closed.

OnComboChange: TComboChangeEvent;

Event triggered when combo selection changes and returning the new selection index and value.
OnComboObjectChange: TComboObjectChangeEvent;

Event triggered when combo selection changes and returning the new selection index, value and
associated object.

For a combobox, it is also possible to control the width of the dropdown list. The width can
automatically adapt to the width of the largest text in the list when

grid.Navigation.AutoComboDropSize is set to true or a custom width can be set through the
property: grid.ComboBox.DropWidth: integer;

Note that a combobox editor selects a string from the dropdown list and the selected value is stored
as a string in the grid cell. In some cases, it is desirable to get the index of the selected combobox
item. You can do this using:

index := grid.ComboBox.Items.IndexOf (grid.Cells[col,row]);
Additional options with using comboboxes:

By default, comboboxes are only visible when the inplace editing has started. In some situations, it
might be helpful that the user can see through the dropdown image that a cell has a combobox.
With TAdvStringGrid this is possible by using one property and one event handler. To enable the
display of comboboxes for any cell that has a combobox inplace editor whether the cell is in edit
mode or not, set grid.ControlLook.DropDownAlwaysVisible = true.

Fine control is also present to configure whether a combobox should immediately display its
dropdownlist when the editor is activated in a cell. This can be enabled with the property
grid.MouseActions.DirectComboDrop = true

If a cell with a combobox should automatically stop the editing after a combobox item is selected,
this can be enabled by setting grid.MouseActions.DirectComboClose = true. Otherwise, the
combobox inplace editor just remains visible after selecting an item and only disappears when a
new cell is selected.

Edit with button attached

edEditBtn, edNumericEditBtn, edFloatEditBtn are three types of inplace edit controls with a button
attached. This inplace edit control is exposed as grid.BtnEdit. Some additional properties available
this way to control the behaviour of this inplace editor are:

32| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

property EditorEnabled: Boolean;

When false, the editor value can only be programmatically changed from the OnEllipsClick event
that is triggered when the button in the edit control is clicked.

property Glyph: TBitmap;

Sets the glyph that can be used on the inplace editor button.

property ButtonCaption: string;

Sets the caption that can be used on the inplace editor button.

property ButtonWidth: integer;
Sets the width of the inplace editor button.
property RightAlign: Boolean;

When true, the inplace editor is right-aligned.
Example: different edit controls with button

In this example a left and right aligned edit with button with different button caption are used:

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);

begin

case ACol of

1:begin
AEditor := edEditBtn;
grid.BtnEdit.RightAligned := True;
grid.BtnEdit.EditorEnabled := False;
grid.BtnEdit.ButtonCaption := '+';

end;

2:begin
AEditor := edCombolList;
grid.BtnEdit.RightAligned False;
grid.BtnEdit.EditorEnabled := True;
grid.BtnEdit.ButtonCaption := '...';

end;
end;
end;

When the attached button is pressed, the OnEllipsClick event is triggered. To set a value from this
event, modify the parameter Value. This example uses an InputQuery call to set the value:

procedure TForml.AdvStringGridlEllipsClick (Sender: TObject; ACol, ARow:
Integer;

33| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

var S: string);
begin

InputQuery ('Enter new value', 'Text',s);
end;

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);

begin

AEditor := edEditBtn;

AdvStringGridl .BtnEdit.EditorEnabled := false;
end;

Edit with unit selection and button attached

This special inplace editor to do a split edit of a physical value and a physical unit, is based on the
fact that such a value is always written as <value><unit> and that value contains numeric data only,
while the unit is a non numeric string or symbol. So, if a cell contains some string like : 100pA the
inplace unit editor will automatically allow split editing of value 100 and unit pA.

Only two things are required to get this working. First, you need to specify the inplace editor
through the OnGetEditorType event. Secondly, all properties of this inplace editor can be accessed
through the grid.BtnUnitEdit property. This BtnUnitEdit has a stringlist property that contains all
possible units.

Example: editing currents and currencies unit edit button

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);

begin
if (aCol = 1) then
begin
grid.BtnUnitEdit.Units.Clear;
grid.BtnUnitEdit.Units.Add (‘pA’) ;
grid.BtnUnitEdit.Units.Add (‘mA’) ;
grid.BtnUnitEdit.Units.Add (‘A");
AEditor := edUnitEditBtn;
end;

if (aCol = 2) then

begin
grid.BtnUnitEdit.Units.Clear (
grid.BtnUnitEdit.Units.Add ('S
grid.BtnUnitEdit.Units.Add (‘£
grid.BtnUnitEdit.Units.Add (‘EU
AEditor := edUnitEditBtn;

end;

) .

’

N — — ~

) ;

end;

Date picker, time and date + time selection

edDateEdit, edDateEditUpDown and edTimekEdit invoke the standard Windows TDateTimePicker
control as inplace editor for date & time editing. This control is exposed as grid.DateTimePicker.
Through this control additional properties such as colors for the inplace datepicker can be

34| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

controlled. If a cell contains both date and time, using edDateTimeEdit allows to edit both the date
& time part in the cell with a special purpose editor that has a datepicker & time edit part.

Edit controls with lookup and auto history

The normal inplace edit and comboboxes have the capability to do lookup on predefined values and
as such perform auto completion while typing. This feature is enabled by setting grid.Lookup to
True. The values to lookup for are set in the stringlist Lookupltems. Auto completion can be case
sensitive or not and this is controlled by grid.LookupCaseSensitive. With LookupHistory set True, the
lookup item list automatically grows with items typed in the grid that are not yet in the
Lookupltems list.

Example: Using lookup for inplace editors

This code initializes the built-in lookup with some predefined value:

begin
with AdvStringGridl do
begin
Options := Options + [goEditing];

LookupItems.Clear;

LookupItems.Add ('BMW") ;
LookupItems.Add ('Mercedes') ;
LookupItems.Add ('Audi');
(
(

LookupItems.Add ('Porsche');
LookupIltems.Add('Ferrari');
Lookup := true;
end;
end;

Typing ‘M’ in a cell, results in automatic lookup to ‘Mercedes

Direct access to inplace editors

All inplace editors can also be directly accessed. This allows controlling additional inplace editor
properties that might not be exposed by the grid. The inplace editors are exposed as public
properties and listed here:

35| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Grid.NormalEdit: normal basic inplace edit control
Grid.SpinEdit: inplace spin edit control

Grid.BtnEdit: inplace edit with embedded button
Grid.BtnUnitEdit: inplace edit with embedded unit selection and button
Grid.ComboBox: inplace combobox

Grid.DateTimePicker: inplace datetimepicker
Grid.InplaceRichEdit: inplace rich editor

Grid.UniEdit: inplace Unicode editor

Grid.UniEditBtn: inplace Unicode editor with button attached
Grid.UniCombo: inplace Unicode combobox

Grid.UniMemo: inplace Unicode memo

Note: the NormalEdit inplace editor is only created upon need for the first inplace edit. This means
that the property Grid.NormalEdit it is not assigned as long as no inplace editing is started.

Advanced topic: rich text inplace editor

With a minimum effort, TAdvStringGrid allows rich text inplace editing. Only 2 event handlers and
one property open the way to rich text editing in every cell or selected cells of TAdvStringGrid.

Specifying the rich text editing

As with all editor types, rich text inplace editing for a cell is set with the OnGetEditorType event.
For the cells that need to be edited with an inplace rich text editor, just specify the edRichEdit as
inplace editor :

procedure TForml.GridGetEditorType (Sender:TObject; ACol, ARow: Integer; var
AEditor: TEditorType) ;
begin
AEditor := edRichEdit
end;

Rich Text formatting in inplace rich text editor

TAdvStringGrid exposes its rich text inplace editor through the property Grid.InplaceRichEdit.
Through this property the selection attributes of the inplace editor can be set just as if it was a
normal standalone richedit control. The button that sets the font bold style therefore is
implemented in the following way:

procedure TForml.BoldBtnClick (Sender: TObject) ;
begin
if Grid.InplaceRichEdit.Visible then
if fsBold in Grid.InplaceRichEdit.SelAttributes.Style then
Grid.InplaceRichEdit.SelAttributes.Style :=
Grid.InplaceRichEdit.SelAttributes.Style - [fsBold]
else
Grid.InplaceRichEdit.SelAttributes.Style
Grid.InplaceRichEdit.SelAttributes.Style + [fsBold];
end;

Other settings are done in a similar way.

Updating toolbar settings from the inplace rich text editor

36| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

An event is used to let toolbar settings for selected characters in the rich text editor reflect the
current selected style such as fontstyle, fonthame etc.. This event OnRichEditSelectionChange is
triggered whenever the user changes the selection in the inplace rich editor. In this event, the
toolbar button style can then set to reflect the setting of the selected text.

For example, the BoldBtn style is set in this event handler in the following way:

procedure TForml.GridInplaceRichEditSelectionChange (Sender:TObject) ;
begin

BoldBtn.Down := fsBold in Grid.InplaceRichEdit.SelAttributes.Style;
end;

Special focus considerations

Normally, whenever another control gains focus, the TAdvStringGrid inplace editor is hidden and the
inplace editor text is set in the grid's cell. However, with rich text inplace editing this behaviour is
not wanted. If the inplace editor would be hidden, the selection would disappear and no longer
available to apply changes such as font changes. Therefore, for a rich text inplace editor the editor
remains visible even when another control on the form gains focus. Some controls, such as a font
selection combobox can then be used to set the selected font name. However, for other control
that perform something like a grid print or preview, the rich text inplace editor should be hidden
and the cell contents should be updated before doing the print. This can be done with the
grid.HidelnplaceEdit method.

Example: changing fontname through fontname combobox:

procedure TForml.FontNameChange (Sender:TObject) ;
begin
if Grid.InplaceRichEdit.Visible then
Grid.InplaceRichEdit.SelAttributes.Name :=
Fontname.Items[Fontname.ItemIndex];
end;

For the print button this is:

procedure TForml.PrintBtnClick (Sender:TObject) ;
begin

grid.HideInplaceEdit;

grid.Print;
end;

Advanced topic: custom inplace editors

TAdvStringGrid allows using other inplace editors than those built-in. This is achieved through a
component TEditLink which takes care of the communication of your edit control and the grid. In
order to use another inplace editor, it is sufficient to write an EditLink descendant with some
methods that do the specific communication with the edit control. The only requirement is that the
edit control is descendant from TWinControl which should not be a problem since almost all are.

In depth look at the TEditLink component:

TEditLink = class (TComponent)
public

37| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

constructor Create (aOwner:TComponent); override;

destructor Destroy; override;

procedure EditKeyDown (Sender: TObject; var Key: Word; Shift:
TShiftState);

property EditCell:TPoint;

property Grid:TAdvStringGrid;

procedure HideEditor;

function GetCellValue:string;

procedure SetCellValue (s:string);

procedure CreateEditor (aParent:TWinControl); wvirtual;

procedure DestroyEditor; wvirtual;

procedure SetFocus (value:boolean); virtual;

procedure SetRect (r:trect); wvirtual;

procedure SetVisible (value:boolean); virtual;

procedure SetProperties; wvirtual;

function GetEditControl:TWinControl; wvirtual;

function GetEditorValue:string; wvirtual;

procedure SetEditorValue (s:string); virtual;
published

property EditStyle:TEditStyle;

property PopupWidth:integer;

property PopupHeight:integer;

property WantKeyLeftRight:boolean;

property WantKeyUpDown:boolean;

property WantKeyHomeEnd:boolean;

property WantKeyPriorNext:boolean

property WantKeyReturn:boolean;

property WantKeyEscape:boolean;

property Tag:integer;
end;

The EditLink presents a series of virtual methods, properties and helper functions that can be used
to communicate with the edit control. You can override these virtual methods where the default
behaviour of the TEditLink must be changed. Below is a discussion of each of these virtual methods :

procedure CreateEditor (aParent:TWinControl) ;

Override this method to create an instance of your edit control. Assign the aParent parameter to its
Parent property. In this stage, the edit control should still be invisible. It is necessary to override
this method.

procedure DestroyEditor;,
Override this method to free the instance of your inplace editor after editing. It is necessary to
override this method.

procedure SetFocus (value:boolean) ;
Override this method only if a special action is required at the time your edit control receives or
looses focus. Overriding this method is normally not required.

procedure SetRect (r:trect);

With this method the coordinates and size is set for the inplace edit control to fit in the cell where
inplace editing happens. An override of this method should only be necessary when your inplace edit
control does not fit into the cell itself, like for example a combobox that drops out of the cell. In
this case, you can just set the height of the edit control in the SetRect method.

procedure SetVisible (value:boolean) ;

Override this method only if a special action is required at the time your edit control is made visible
or is hidden again. Overriding this method is normally not required.

38| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

procedure SetProperties (value:boolean) ;

Override this method if properties of the edit control must be set after it is visible. Some edit
control properties only work properly when set when the edit control is visible. In this case, the
SetProperties method is the ideal place.

function GetEditControl:TWinControl;

Override this method to return your edit control as TWinControl. Your edit control should be
descendant of TWinControl so you can cast it to a TWinControl. For example :
result:=TWinControl(myEdit); It is necessary to override this method.

function GetEditorValue:string;
Override this function to return the value of your edit control as a string to put into the cell after
editing. It is necessary to override this method.

procedure SetEditorValue (s:string);
Override this method to set the value of your edit control from the current cell value before
editing. It is necessary to override this method.

Further, there are some helper functions:

procedure HideEditor;,
Hides the inplace edit control. This method should be called when your edit control looses focus. It
is typically called from your edit control OnExit event.

procedure EditKeyDown;
Default key handler for special keys that are used inside the grid, such as arrow keys, return key
etc..

function GetCellValue:string;
Retrieves the cell value of the cell being edited. Normally this is not used, but done through the
SetEditorValue method.

procedure SetCellValue (s:string);
Sets the cell value of the cell being edited. Normally this is not used, but done through the
GetEditorValue method.

The EditLink properties are:

property EditStyle:TEditStyle;,

Determines if your edit control is eslnplace or esPopup style. Specify esPopup style only for inplace
edit control that can fully overlap the grid, for example when using a TMemo that could hang out of
the grid during editing. All other edit control, including a combobox should be declared as esInplace
since their main editing part stays inside the grid's cell.

property PopupWidth:integer;
Defines the width of the overlapping edit control in esPopup style.

property PopupHeight:integer;,
Defines the height of the overlapping edit control in esPopup style.

property PopupLeft: integer;

Defines the left position of the popup edit control. By default when zero this is automatically
positioned under the cell being edited.

property PopupTop: integer;

Defines the top position of the popup edit control. By default when zero this is automatically
positioned under the cell being edited.

property WantKeyXXXX:boolean;

39| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Defines if the edit control handles the key itself or the grid's default key handler should handle the
key. For multiline inplace editors for example, it might be necessary to let your edit control handle
the return key itself instead of the grid.

property Tag:integer;
Property that can be used to further identify your EditLink descendant.

property Grid:TAdvStringGrid;,
Returns the grid being edited.

property EditCell:TPoint;
Returns the coordinates of the cell being edited.

Using the TEditLink with TAdvStringGrid

After the TEditLink descendant has been written to communicate with your edit control, it is
necassary to tell TAdvStringGrid to use this EditLink component and thus also your edit control. To
achieve this, the TAdvStringGrid's EditLink property is used with the OnGetEditorType event. In the
OnGetEditorType event, the inplace editor is defined as edCustom and either globally or in this
event, the EditLink property of TAdvStringGrid can be set to your descendant TEditLink. Of course,
when the grid's EditLink property is set globally, only one custom inplace editor type can be used,
but when it is set from the OnGetEditorType event, nothing prevents you from writing multiple
TEditLink descendant components and assign them dependent on which cells you want to edit in the
grid. As such, a typical OnGetEditorType event could look like :

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; aCol,
aRow: Integer; wvar aEditor: TEditorType);

begin
case acol of
2: advstringgridl .EditLink := EditLinkl;
3: advstringgridl.EditLink := EditLink2;
4: advstringgridl.EditLink := EditLink3;
5: advstringgridl.EditLink := EditLink4;
6: advstringgridl.EditLink := EditLink5;
end;

if acol in [2,3,4,5,6] then
aEditor := edCustom;
end;

Here, 5 different EditLink types have been used to use a different inplace editor for 5 different
columns. As your edit control will not have been constructed yet in the OnGetEditorType event, this
is not a good place to specify properties of your edit control dependent of the position of the edit
control in the grid. Although this is usually not necessary, it can be interesting for example to
change your edit control's color or font depending on the color or font of the cell being edited. This
can be achieved in the OnGetEditorProp event which is called after your edit control has been
constructed with help of the EditLink specified. In the example below, a TAdvEdit control is used as
inplace editor and the focus color is adapted to the banding color used in the grid:

procedure TForml.AdvStringGridlGetEditorProp (Sender: TObject; aCol, aRow:
Integer; aEditLink: TEditLink);

begin
if Assigned(aEditLink) then
begin
if acol = 2 then
begin

if odd(arow) then

40| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

(aEditLink.GetEditControl as TAdvEdit) .FocusColor:=clInfoBk
else
(aEditLink.GetEditControl as TAdvEdit) .FocusColor:=clWhite;
end;
end;
end;

Example: TEditLink to use TAdvEdit in TAdvStringGrid (minimal implementation)

type
TAdvEditEditLink = class (TEditLink)
private
FEdit:TAdvEdit;
protected
procedure EditExit (Sender:TObject) ;
public
procedure CreateEditor (aParent:TWinControl); override;
procedure DestroyEditor; override;
function GetEditorValue:string; override;
procedure SetEditorValue (s:string); override;
function GetEditControl:TWinControl; override;
end;

To link TAdvEdit with TAdvStringGrid, only a miminum set of TEditLink methods are used :

In the CreateEditor method, the TAdvEdit instance is created, its parent is set, the OnKeyDown
event is assigned to the default EditKeyDown handler, size is set to 0 to make sure it is always
invisible, some properties like ModifiedColor, ShowModified and BorderStyle are set. Finally, since
TAdvEdit should handle the the Left, Right arrow keys as well as Home & End keys, the properties
WantKeyLeftRight and WantKeyHomeEnd are set accordingly :

{ TAAvEditEditLink }

procedure TAdvEditEditLink.CreateEditor (AParent:TWinControl) ;

begin
FEdit := TAdvEdit.Create (Grid);
FEdit.BorderStyle := bsNone;
FEdit.OnKeydown := EditKeyDown;
FEdit.OnExit := EditExit;
FEdit.Width := 0;
FEdit.Height := 0;
FEdit.Parent := AParent;
WantKeyLeftRight := True;
WantKeyHomeEnd := True;

end;

The DestroyEditor simply frees the instance of the inplace editor:

procedure TAdvEditEditLink.DestroyEditor;
begin
if Assigned(FEdit) then
FEdit.Free;
FEdit := nil;
end;

41| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Since the TAdvEdit component works with strings as well to edit, the GetEditorValue and
SetEditorValue methods are simply setting and getting the cell contents to and from the TAdvEdit
component's Text property:

function TAdvEditEditLink.GetEditorValue:string;
begin

Result := FEdit.Text;
end;

procedure TAdvEditEditLink.SetEditorValue(s: string);
begin

FEdit.Text := s;
end;

In order to hide the editor when it looses focus, the EditExit procedure for the OnExit event, calls
the HideEditor method :

procedure TAdvEditEditLink.EditExit (Sender: TObject);
begin

HideEditor;
end;

Finally, much of the magic behind the TEditLink works because TAdvStringGrid treats the inplace
editor as a TWinControl descendant, and therefore the grid must be able to obtain it as such with
the GetEditControl method :

function TAdvEditEditLink.GetEditControl: TWinControl;
begin

Result := FEdit;
end;

Making more edit control properties available at design time

This was the minimal implementation of the TEditLink that uses the TAdvEdit component with its
default properties. To make the TAdvEdit properties accessible at design time, the TAdvEdit
properties can be added to the TEditLink component and transferred from the TEditLink component
to the TAdvEdit component in the SetProperties method. In the TAdvEditEditLink component
provided this is done in following way:

TAdvEditEditLink = class (TEditLink)

public
procedure SetProperties; override;

published
property EditAlign:TEditAlign read FEditAlign write FEditAlign;
property EditColor:TColor read FEditColor write FEditColor;
property ModifiedColor:TColor read FModifiedColor write FModifiedColor;
property EditType:TAdvEditType read FEditType write FEditType;
property Prefix:string read FPrefix write FPrefix;
property ShowModified:boolean read FShowModified write FShowModified;
property Suffix:string read FSuffix write FSuffix;
property Precision:integer read FPrecision write FPrecision;

end;

The set of properties that is exposed with the TEditLink is used for TAdvEdit in the SetProperties
method :

procedure TAdvEditEditLink.SetProperties;

42 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

begin
inherited;
FEdit.Color := FEditColor;
FEdit.FocusColor := FEditColor;
FEdit.EditAlign := FEditAlign;
FEdit.ModifiedColor := FModifiedColor;
FEdit.Prefix := FPrefix;
FEdit.Suffix := FSuffix;
FEdit.ShowModified := FShowModified;
FEdit.Precision := FPrecision;

end;

Validating editing

An important part of editing is its validation. While the grid includes many capabilies to force that
only desired values can be entered, in many cases an extra validation is required. TAdvStringGrid
triggers the event OnCellValidate when editing in a cell ends. The event can be triggered in all
cases the editing of a cell ends or only when the editing ends with the value of the cell effectively
changed. This can be choosen with the public property grid.AlwaysValidate: Boolean. By default,
grid.AlwaysValidate is set to False. Through the parameters Value: string and Valid: Boolean, it can
be returned whether the edited value is valid or not and the value can be optionally automatically
restored or auto-corrected.

In this sample, the OnCellValidate event is used to force entering a value with a length of minimum
3 characters and maximum 5 characters. When the entry is incorrect, the original cell value is
restored:

procedure TForml.AdvStringGridlCellValidate (Sender: TObject; ACol,
ARow: Integer; var Value: string; var Valid: Boolean);

begin
valid := (length(value) >= 3) and (length(value) <= 5);
if not valid then
Value := AdvStringGridl.OriginalCellValue;
end;

The grid provides a mechanism to notify the user of the reason the entry is not valid by showing a
balloon.

When the Valid parameter of the OnCellValidate event is set to false the balloon will show when
grid.InvalidEntryTitle, grid.InvalidEntryText are a non empty text. Additionally, the icon can be set
via grid.InvalidEntrylcon. The OnCellValidate event handler here shows how a different balloon
invalid entry text is set when the length of the input is smaller than 3 or larger than 5:

procedure TForm?.AdvStringGridlCellValidate (Sender: TObject; ACol,
ARow: Integer; var Value: string; var Valid: Boolean);

begin

if length(value) < 3 then

begin
Advstringgridl.InvalidEntryTitle := 'Input error';
Advstringgridl.InvalidEntryText := 'Entry not sufficiently long';
Valid := false;

end;

if length(value) > 5 then

begin

43 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Advstringgridl.InvalidEntryTitle := 'Input error';
Advstringgridl.InvalidEntryText := 'Entry is too long';
Valid := false;

end;

end;

This results in:

A\ Input error
Entry is too long

Note 1: in order to display balloons in the grid, it is required to set grid.Balloon.Enable = true.
Note 2: when reparenting the grid, it is required to set grid.Balloon.Enable = false before changing
the parent programmatically and set grid.Balloon.Enable = true again after the new parent is set.

Further balloon settings are available under grid.Balloon and discussed in the paragraph about
adding balloons to the grid.

44 | Page

tmssoftware

TAdvStringGrid mouse and navigation control

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

Extensive control is available for controlling navigation with keyboard and mouse in the grid and
control of automatic key triggered actions such as clipboard handling. These settings are available
through the grid.Navigation and grid.MouseActions properties.

Navigation properties

AdvanceAuto: Boolean;

When true, editing with masked inplace edit
automatically advances to the next cell when the
mask has been completed.

AdvanceAutoEdit: Boolean;

When true, after pressing return to advance the
inplace editor to the next cell, this cell is
automatically put into editing mode.

AdvanceDirection: TAdvanceDirection;

Sets the directorion of the auto advance upon
pressing Enter or Return to either adTopLeft or
adLeftRight.

Advancelnsert: Boolean;

When true, pressing enter on the last cell of the
last row automatically inserts a new row

AdvanceOnEnter: Boolean;

When true, pressing Return or Enter automatically
advances to the next cell. The direction of the
auto advance is controlled by the
AdvanceDirection property

AllowClipboardAlways: Boolean;

Allows clipboard actions irrespective of cells being
read-only

AllowClipboardColGrow: Boolean;

When true, the number of columns in the grid can
grow if more columns are pasted than already
present in the grid

AllowClipboardRowGrow: Boolean;

When true, the number of rows in the grid can
grow if more rows are pasted than already
present in the grid

AllowClipboardShortCuts: Boolean;

When true, pressingCtrl-Ins, Shift-Ins, Shift-Del,
Ctrl-X, Ctrl-V, Ctrl-C automatically triggers the
clipboard handling. Unless AllowClipboardAlways
is set true, clipboard actions are only applied on
editable cells.

AllowCtrlEnter: Boolean;

When true, pressing Ctrl-Enter will add a line
break in an inplace editor.

AllowDeleteRow: Boolean;

When true, pressing the Del key removes a row.
The OnAutoDeleteRow event is triggered.

AllowFmtClipboard: Boolean;

Allows copy and paste of both cell text and cell
properties in TAdvStringGrid or between multiple

45 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid controls.

AllowlInsertRow: Boolean;

When true, pressing the Ins key inserts a new row.
The OnAutolnsertRow event is triggered. The
position of the inserted row is controlled by the
InsertPosition property.

AllowRTFClipboard: Boolean;

Allows copy and paste of rich text in the grid

AllowSmartClipboard: Boolean;

When true, pasting automatically completes
ranges in selected cells. If for example 2 cells are
copied on the clipboard with values ‘1’ and ‘2’,
pasting this in 10 cells will paste as
“1°,2’,’3°..10°

AlwaysEdit: Boolean;

When true, the inplace editor is always visible.
When this behaviour is wanted, this needs to be
set true instead of the TStringGrid
goAlwaysShowEditor in grid.Options

AppendOnArrowDown: Boolean;

When true, pressing the down arrow on the last
row of the grid will automatically insert a new
row.

AutoComboDropSize: Boolean;

When true, the combobox dropdown size
automatically adapts to the largest string in the
combobox

AutoGotolncremental: Boolean;

Can be used combined with AutoGotoWhenSorted
where the lookup for text is incremental, i.e. the
search refines with each character typed.

AutoGotoWhenSorted: Boolean;

When true, typing a character automatically
moves the current cell to the first cell that starts
with character typed. This applies for pressing
characters in sorted columns only.

ClipboardPasteAction: TClipboardPasteAction;

Value can be set to paReplace or palnsert. When
ClipboardPasteAction is paReplace, cells are
replaced from the top left corner with pasted cell
values. When ClipboardPasteAction is palnsert,
cells are inserted in the grid from the top, left
selected cell.

CopyHTMLTagsToClipboard: Boolean;

When true, HTML tags are also copied on the
clipboard

CursorWalkAlwaysEdit: Boolean;

Controls whether the inplace editor of the next
cell after pressing left / right is automatically put
in edit mode or not

CursorWalkEditor: Boolean;

When true, pressing cursor left key if caret is on
first character position moves to previous cell,
pressing cursor right key when caret is on last

46 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

character position moves to the next cell

EditSelectAll: Boolean;

When true, all text is selected when the inplace
editor starts. Otherwise, no text is selected and
the caret is after the last character position.

HomeEndKey: THomeEndAction;

Defines the behaviour of Home and End key as
either going to top/bottom row or left rightmost
column

ImproveMaskSel: Boolean;

Automatically positions entry on first editable
character of the mask edit instead of selecting
the full mask

InsertPosition: TInsertPosition;

Determines if a row is inserted before or after the
current row when Ins is pressed and
AllowlnsertRow is True

KeepHorizScroll: Boolean;

When true, navigating up or down in the grid with
a horizontally scrolled grid keeps this horizontal
scroll instead of scrolling back to leftmost position

KeepScrollOnSort: Boolean;

When true, the horizontal scroll position is not
changed when the grid is sorted by clicking on a
column header. When false, the horizontal scroll
position is reset to the leftmost position.

LeftRightRowSelect: Boolean;

When true, the default behaviour applies and if
row selection is enabled, pressing left/right arrow
keys change the selected row. When false,
left/right arrow keys change the horizontal scroll

LineFeedOnEnter: Boolean;

When true, pressing Ctrl-Enter adds a linefeed in
the cell instead of stopping the inplace edit

MoveRowOnSort: Boolean;

When true, the current selected row remains in
focus after sort

MoveScrollOnly: Boolean;

When true, only the scroll position in the grid
changes when pressing keys
Up,Down,Next,Prior,Home,End. When false, it is
the selection that changes in the grid for these
keys.

SkipFixedCells: Boolean;

When true, using the arrow keys to move the
selected cell will let the selection jump over fixed
(non-selectable) cells in the grid.

TabAdvanceDirection: TAdvanceDirection;

Sets the directorion of the auto advance upon
pressing Tab to either adTopLeft or adLeftRight.
Note that goTabs must be set true in grid.Options
to allow tab keys in the grid.

47 |Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

TabToNextAtEnd: Boolean;

When true and goTabs is set True in grid.Options,
after tabbing inside the grid to the last cell, the
focus moves to the next control

MouseActions properties

AllColumnSize: Boolean;

When true, resizing one column resizes all columns
proportionally. Note that goColSizing needs to be set
to True in grid.Options for this

AllRowsSize: Boolean;

When true, resizing one row resizes all rows
proportionally. Note that goRowSizing needs to be
set to True in grid.Options for this

AllSelect: Boolean;

When true, all cells can be selected by clicking in
the topleft fixed cell

AutoSizeColOnDblClick: Boolean;

When true, a double click on the column edge will
autosize the column to the text width.

CaretPositioning: Boolean;

When true, clicking a cell to start inplace editing
automatically positions the caret on the position
where the mouse click happened to start editing

CheckAllCheck: Boolean;

When true, a checkbox click in the top fixed row will
automatically set all checkboxes in the column
below to the same setting as the top checkbox.

ColSelect: Boolean;

When true, a full column can be selected by clicking
a column header cell

DirectComboClose: Boolean;

When true, the combobox inplace editing
automatically ends when its dropdown is closed.

DirectComboDrop: Boolean;

When true, clicking on a cell with combobox inplace
editor immediately causes a dropdown of the
combobox

DirectDateClose: Boolean;

When true, the datepicker inplace editing
automatically ends when its dropdown calendar is
closed.

DirectDateDrop: Boolean;

When true, clicking on a cell with datepicker inplace
editor immediately causes a dropdown of the
calendar.

DirectEdit: Boolean;

When true, clicking a cell immediately starts editing
instead of first selecting the cell and entering edit
mode after another mouse click.

DisjunctCellSelect: Boolean;

When true, allows selection of disjunct cells through
Ctrl + left mouse click. The list of disjunct selected
cells can be obtained with the SelectedCell[Index:

48 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

Integer]: TGridCoord property where
SelectedCellCount is returning the number of
selected cells.

DisjunctColSelect: Boolean;

When true, allows selection of disjunct columns
through Ctrl + left mouse click. The selectionstate of
columns can be obtained through
grid.ColSelect[ARow: Integer]: Boolean

DisjunctRowSelect: Boolean;

When true, allows selection of disjunct rows through
Ctrl + left mouse click. The selectionstate of rows
can be obtained through grid.RowSelect[ARow:
Integer]: Boolean

EditOnDblClickOnly: Boolean;

When true, the inplace editing is only started when
double clicking on a cell. Otherwise, the editing is
started by default upon a single click in a selected
cell.

FixedColsEdit: TGridFixedCellEdit;

Selects the type of editor for the fixed column

FixedRowsEdit: TGridFixedCellEdit;

Selects the type of editor for the fixed row

HotmailRowSelect: Boolean;

When true, row selection can be done through clicks
on the checkbox in the first fixed column.

MoveRowOnNodeClick: Boolean;

When true, clicking on a node also moves the
selected cell or row to the row where the node is
positioned.

NoAutoRangeScroll: Boolean;

When true, scrolling range selection is not
automatically started when clicking a half visible
cell at bottom or right side of the grid

NodeAllExpandContract: Boolean;

When true, a node in the top fixed row will expand
or collaps all nodes in the column below the fixed
cell.

NoScrollOnPartialRow: Boolean;

When true, the grid is not automatically scroll to
bring a partially visible row in view that is clicked.

PreciseCheckBoxCheck: Boolean;

When true, a checkbox will only toggle when the
mouse is over the checkbox, otherwise the checkbox
will toggle for a click anywhere in the cell.

RangeSelectAndEdit: Boolean;

When true, range selection and editing style
(goRangeSelect and goEditing in grid.Options) can be
combined

RowSelect: Boolean;

When true, a full row can be selected by clicking a
row header cell

RowSelectPersistent: Boolean;

When true, in a grid with disjunct selected rows
with nodes, the selection of rows is persisted when

49 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

nodes collaps or expand.

SelectOnRightClick: Boolean;

When true, the mouse right-click button operates
just like the left button to select a cell

SizeFixedCol: Boolean;

Allows sizing with mouse of the first fixed column(s)
which otherwise cannot be sized when goColSizing is
True in grid.Options

SizeFixedRow: Boolean;

Allows sizing with mouse of the first fixed row(s)
which otherwise cannot be sized when goRowSizing
is True in grid.Options

WheelAction: TWheelAction

Selects whether a mouse wheel move will scroll the
grid or move the selection in the grid.

Wheellncrement: integer

Selects the number of rows to move for a mouse
wheel movement. When zero, the default number as
configured in Windows is used.

50| Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid cell and cell properties access

Various properties enable handling cell data. The most simple way is to use the
grid.Cells[ACol,ARow]: string property. In addition TAdvStringGrid provides:

grid.AllCells[ACol,ARow]: string;

Access the grid cell as string irrespective of hidden
columns or rows. grid.AllCells returns the cell as
displayed, ie. after possible processing of the real cell
text by the event OnGetDisplText

grid.AllFloats[ACol,ARow]: Double;

Access the grid cell as float irrespective of hidden
columns or rows

grid.AllGridCells[ACol,ARow]: string;

Access the grid cell as string irrespective of hidden
columns or rows. grid.AllGridCells returns the cell as
stored, ie. before possible processing by the event
OnGetDisplText

grid.AllObjects[ACol,ARow]: TObject;

Access the TObject that can be associated with each
cell irrespective of hidden columns or rows

grid. AllWideCells[ACol,ARow]: widestring

Access the grid cell as widestring irrespective of
hidden columns or rows

grid.Dates[ACol,ARow]: TDateTime;

Access the grid cell as date

grid.Floats[ACol,ARow]: Double;

Access the grid cell as double. If no floating point data
is in the cell, the value 0.0 is returned. When setting
the cell data through grid.Floats, the grid.FloatFormat
property is used to format the floating point data as
text.

grid.GridCells[ACol,ARow]: string;

Access the grid cell as string. grid.GridCells returns the
cell as stored, ie. before possible processing by the
event OnGetDisplText

grid.Ints[ACol,ARow]: Integer;

Access the grid cell as integer. If no integer is in the
cell, the value 0 is returned.

grid.Objects[ACol,ARow]: TObject;

Access the TObject that can be associated with each
cell

grid.Times[ACol,ARow]: TDateTime;

Access the grid cell as time

grid.WideCells[ACol,ARow]: widestring

Access the grid cell as widestring

Two ways exist to apply colors, fonts & alignment to grid cells. A dynamic way exists that allows
setting these properties through events. The dynamic cell settings through events is a flexible and
memory friendly way to apply colors, alignment etc.. to grid cells as no additional storage is
required per cell for storing these cell properties.

Dynamic cell properties

51 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

The events to handle these settings are:

OnGetcCellColor:

TGridColorEvent = procedure (Sender: TObject; ARow, ACol: Integer;
AState: TGridDrawState; ABrush: TBrush; AFont: TFont) of object;

This event is triggered when painting a cell and queries for the background brush of the cell and the
font.

OnGetAlignment:

TGridAlignEvent = procedure (Sender: TObject; ARow, ACol: Integer;
var HAlign: TAlignment;var VAlign: TAsgVAlignment) of object;

The grid align event is also triggered when painting a cell and queries for horizontal and vertical
text alignment in a cell.

OnGetCellGradient:

TGridGradientEvent = procedure (Sender: TObject; ARow, ACol: Integer;
var Color, ColorTo, ColorMirror, ColorMirrorTo: TColor) of object;

This event is triggered to dynamically set a dual (mirrored) gradient. The upper half rectangular
gradient is from Color to ColorTo, the bottom half rectangular gradient is from ColorMirror to
ColorMirrorTo.

Example: setting font color and alignment depending on cell values

procedure TForml.AdvStringGridlGetCellColor (Sender: TObject; ARow,
ACol: Integer; AState: TGridDrawState; ABrush: TBrush; AFont: TFont);

begin
if grid.Ints[ACol,ARow] > 0 then
AFont.Color := clBlack
else
AFont.Color := clRed;
end;

procedure TForml.AdvStringGridlGetAlignment (Sender: TObject; ARow,
ACol: Integer; wvar HAlign: TAlignment; var VAlign: TVAlignment) ;

begin
if (grid.Ints[ACol,ARow] >= 1000) then
HAlign := taRightJustify
else
HAlign := taleftJustify;
end;

52 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Static cell properties

Cell properties can also be set directly. Using this approach of course requires more memory as the
properties are stored with each cell. Possible properties are:

property Alignments[Col,Row: Integer]: TAlignment;

property Colors|[Col,Row: Integer]: TColor;
property ColorsTo[Col,Row: Integer]: TColor;

property FontColors[Col,Row: Integer]: TColor;
property FontStyles[Col,Row: Integer]: TFontStyles;
property FontSizes[Col,Row: Integer]: Integer;

property FontNames[Col,Row: Integer]: string;

Example: setting a cell 2,3 to red background, bold Tahoma font and right aligned

Grid.Colors([2,3] := clRed;

Grid.FontStyles[2,3] := Grid.FontStyles[2,3] + [fsBold];
Grid.FontNames[2,3] := ‘Tahoma’;

Grid.Alignments[2,3] := taRightJustify;

Note: the property grid.ColorsTo[Col,Row: Integer]: TColor is used for specifying vertical gradients
in cells from color set by Colors[] to color set by ColorsTo[].

This sets a vertical gradient from red to white in cell 1,1:

Grid.Colors[1,1] := clRed;
Grid.ColorsTo[l,1] := clWhite;

53 | Page

TMS SOFTWARE
tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid cell graphics

TAdvStringGrid has support to add all kinds of graphics to a cell. These include:

Bitmap Windows bitmap

Icon Windows icon

ImageList Imagelist element

Datalmage Cell data dependent imagelist element
Images Multiple imagelist elements

Picture Picture

FilePicture Picture file reference

Rotated Rotated text

Comment Comment indicator

CheckBox Checkbox

DataCheckBox Cell data dependent checkbox
Radiogroup Radiobuttons

Radiobutton Radiobutton

XP Progress XP style Progressbar

Progress Progressbar

ProgressPie Progress pie

Rangelndicator Bi-color range indicator
Button Button

BitButton BitButton

Balloon Balloon

Interface Custom graphics via interface
Bitmaps

The functions available to handle bitmaps in cells are:

function CreateBitmap (ACol,ARow: Integer;transparent: Boolean;
hal:TCellHalign; val:TCellValign) :TBitmap;

procedure AddBitmap (ACol,ARow: Integer;ABmp:TBitmap; Transparent: Boolean;
hal:TCellHalign; val:TCellValign) ;

procedure RemoveBitmap (ACol,ARow: Integer);
function GetBitmap (ACol,ARow: Integer) :TBitmap;

The difference between CreateBitmap and AddBitmap is that with CreateBitmap, the bitmap
instance is created, maintained and destroyed by the grid while with AddBitmap it is the
responsibility of the programmer to create the instance and destroy it.

In code this difference becomes clear:
// add bitmap from resource to the grid

Grid.CreateBitmap (2, 3, True, haBeforeText, vaTop) . LoadFromResourceName (HInstan
ce, ' TEST") ;

var
Bmp: TBitmap;

54 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Bmp := TBitmap.Create;
Bmp.LoadFromResourceName (HInstance, ' TEST") ;
Grid.AddBitmap (2, 3, True, haBeforeText,vaTop) ;

// at the end of the application, the bitmap needs to be destroyed
Bmp. Free;

Icons

The functions available to handle icons in cells are:

function CreatelIcon (ACol,ARow: Integer; hal:TCellHalign;
val:TCellValign) :TIcon;

procedure AddIcon (ACol,ARow: Integer;AIcon:TIcon; hal:TCellHalign;
val:TCellValign) ;

procedure RemovelIcon (ACol,ARow: Integer);

The same logic applies for Icons as for Bitmaps for the difference between Createlcon and Addicon.

Imagelist elements

An image from the imagelist assigned the the grid.Gridlmages property can be inserted in a cell.
The following methods are available for this:

procedure AddImagelIdx (ACol,ARow,Aidx:
Integer;hal:TCellHalign;val:TCellValign) ;

procedure RemovelImagelIdx (ACol,ARow: Integer);
function GetImagelIdx (ACol,ARow: Integer;var idx: Integer): Boolean;

The Idx parameter is the index of the image in the imagelist. The Getlmageldx returns false if
Getlmageldx was called for a cell that does not contain an imagelist element.

It is also possible to add an imagelist element with an index that is set through the cell text with
these methods:

procedure AddDatalmage (ACol,ARow,Aidx: Integer; hal:TCellHalign;
val:TCellvValign) ;

procedure RemoveDatalmage (ACol,ARow: Integer);

function HasDatalmage (ACol,ARow: Integer): Boolean;

To set image 2 from the imagelist in a cell 2,3, this requires:

Grid.AddDataImage (2, 3,2, haBeforeText,vaTop) ;

55| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

This sets the cell text to ‘2’. If later the cell text is changed to ‘3’, the image will automatically
change to image 3 of the imagelist.

Multiple imagelist elements

To add multiple images in a cell, two methods are defined:

procedure AddMultilImage (ACol,ARow,Dir: Integer; hal:TCellHalign;
val:TCellValign) ;

procedure RemoveMultilImage (ACol,ARow: Integer);

The Dir parameter sets the direction of the images, with 0 = horizontal and 1 = vertical.
After calling AddMultilmage, the indexes of the images can be set with the property
Grid.CellImages[ACol,ARow]: TIntList;

Example: setting 3 imagelist based images in a cell
Grid.AddMultiImage (2, 3,0, haBeforeText,vaTop) ;

Grid.CellImages[2,3].Add(2); // index of first image
Grid.CellImages[2,3].Add (0); // index of second image
Grid.CellImages[Z2,3].Add (5); // index of third image

Pictures

Adding pictures is very similar to adding bitmaps to a cell. The CreatePicture and AddPicture are
available to add a picture that is either created, maintained and destroyed by the grid or a picture
that is created, maintained and destroyed by the application. An extra parameter for adding
pictures is the stretch mode. This controls how the picture is stretched in the cell and can be:

TStretchMode =
(noStretch, Stretch, StretchWithAspectRatio, Shrink, ShrinkWithAspectRatio) ;

noStretch the picture is not stretched

Stretch stretch horizontally & vertically to fit in the cell

StretchWithAspectRatio stretch horizontally & vertically with aspect ratio to fit in the cell

Shrink only shrink the image when it is too large for the cell

ShrinkWithAspectRatio shrink with aspect ratio when image is too large

56 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

function CreatePicture (ACol,ARow:Integer; transparent:Boolean;
stretchmode:TStretchMode; padding:Integer; hal:TCellHalign;
val:TCellValign) : TPicture;

procedure AddPicture (ACol,ARow: Integer;APicture:TPicture;transparent:
Boolean; stretchmode:TStretchMode; padding: Integer; hal:TCellHalign;
val:TCellValign) ;

procedure RemovePicture (ACol,ARow: Integer);
function GetPicture (ACol,ARow: Integer) :TPicture;

With normal pictures, once the pictures are created or added, the picture requires memory
necessary for holding the picture. When holding a large amount of large pictures, this can quickly
become a problem. Therefore, a TFilePicture can be created and inserted. A TFilePicture only
contains a reference to the file picture and does not require memory to hold the picture. The
TFilePicture will load and display the picture only for the visible cells.

function CreateFilePicture (ACol,ARow: Integer;Transparent: Boolean;
StretchMode:TStretchMode; padding:Integer; hal:TCellHalign;
val:TCellValign): TFilePicture;

procedure AddFilePicture (ACol,ARow:
Integer;AFilePicture:TFilePicture; Transparent:
Boolean; stretchmode:TStretchMode;padding:
Integer;hal:TCellHalign;val:TCellValign) ;

procedure RemoveFilePicture (ACol,ARow: Integer);
function GetFilePicture (ACol,ARow: Integer): TFilePicture;
Example: adding a picture with normal picture methods and file picture methods

Grid.CreatePicture (2,3, True,Shrink,0,halLeft,vaTop) .LoadFromFile (‘TST.JPG") ;
Grid.CreateFilePicture (2, 3, True, Shrink, 0, haleft,vaTop) .Filename :=
‘TST.JPG’ ;

Rotated text

Text rotated in any angle can be added in a cell. Note that it is required that font used for the cell
is a TrueType font. Non truetype fonts are not guaranteed to work with text rotation. Following
methods are available to help with handling rotated text in cells:

procedure AddRotated (ACol,ARow: Integer; AAngle: Smallint; s: string);
procedure SetRotated (ACol,ARow: Integer; AAngle: SmalllInt);

procedure RemoveRotated (ACol,ARow: Integer);

function IsRotated (ACol,ARow: Integer;var aAngle: Integer): Boolean;
Adding 90 degrees rotated text is as such easy:

Grid.AddRotated (2,3,90,"This is rotated’);

57| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Comments

A comment indicator is a little triangle in the right top corner of the cell that indicates a comment
text is available for the cell. When the mouse is over the comment indicator, this comment is
displayed as a hint. The color of the little triangle comment indicator is red by default but can be
set in another color with the property grid.ControlLook.CommentColor: TColor or it can be set as
parameter of the method AddColorComment.

This is an overview of comment related methods & properties:
procedure AddComment (ACol,ARow: Integer; Comment:string);

Adds a comment with default color to cell ACol,ARow.

procedure AddColorComment (ACol,ARow: Integer; Comment:string; Color:
TColor) ;

Adds a comment with color to cell ACol,ARow.
procedure RemoveComment (ACol,ARow: Integer);

Removes the comment from cell ACol,ARow.
procedure RemoveAllComments;

Removes comments from all cells in the grid.
function IsComment (ACol,ARow: Integer;var comment:string): Boolean;

The IsComment method returns true when the specified cell effectively contains a comment and it
returns this comment text in the comment parameter.

property CellComment [ACol,ARow: integer]: string;

Provides access to cell comments as property.

Checkbox and DataCheckbox

Two types of checkboxes exist. A normal checkbox can be added to a cell with some text. The
checkbox state is set through the SetCheckBoxState method. A data checkbox is added to a cell and
the checkbox state reflects the cell text. If the cell text is equal to the grid.CheckTrue property,
the checkbox is displayed as checked, if the cell text is equal to the grid.CheckFalse property, the
checkbox is displayed as not checked. The checkbox is displayed grayed when the cell is set to
readonly with the OnCanEditCell event. If it is not desirable that a checkbox looks disabled for
readonly cells, set grid.NoDisabledCheckRadioLook = true. If a data checkbox is used, clicking the
checkbox will cause the cell text to change from grid.CheckFalse to grid.CheckTrue or vice versa.

This is an overview of methods that can be used with checkboxes:
procedure AddCheckBox (ACol,ARow: Integer;State,Data: Boolean);

procedure RemoveCheckBox (ACol,ARow: Integer);

58 | Page

,f TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID
DEVELOPERS GUIDE

function HasCheckBox (ACol,ARow: Integer): Boolean;

function HasDataCheckBox (ACol,ARow: Integer): Boolean;

function GetCheckBoxState (ACol,ARow: Integer;var state: Boolean): Boolean;

function SetCheckBoxState (ACol,ARow: Integer;state: Boolean): Boolean;

function ToggleCheckBox (ACol,ARow: Integer): Boolean;

procedure AddCheckBoxColumn (ACol: Integer);

procedure RemoveCheckBoxColumn (ACol: Integer);

Example: counting the number of checked checkboxes in a column

var
I,Num: integer;
State: Boolean;

begin
Num := 0;

for I := grid.FixedRows to grid.RowCount - 1 do
begin
if grid.GetCheckboxState (Col,I,State) then
if State then inc (Num) ;
end;
end;

Example: alternative to count checked data checkboxes
Supposing the checkboxes have been added with grid.AddCheckBox(Col,Row,False, True);

var
I,Num: integer;

begin
Num := 0;
for I := grid.FixedRows to grid.RowCount - 1 do
begin
if grid.Cells[Col,I] = grid.CheckTrue then
inc (Num) ;
end;
end;

Two events can be triggered from the checkbox, the OnCheckboxClick and the OnCheckboxMouseUp
event.

Sometimes, it is desirable to have a checkbox in a fixed column header cell that can immediately
check or uncheck all checkboxes in the column. It is easy to have this type of functionality in

59 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid:

with AdvStringGridl do

Begin
Options := Options + [goEditing];
AddCheckBoxColumn (1) ;
AddCheckBox (1,0, false, false) ;
MouseActions.CheckAllCheck := true;

end;

18 EEEEE EyE

Programmatically, the entire column of checkboxes can be checked or unchecked with the methods:
procedure CheckAll (Col: Integer);

procedure UnCheckAll (col: Integer);

Radiobuttongroups

To add a radiobuttongroup to the grid, a stringlist is used for the text associated with each
radiobutton. With the AddRadio and CreateRadio methods the same logic is applied to a stringlist
maintained by the grid and a stringlist maintained by the application as for a bitmap with the
AddBitmap and CreateBitmap methods. The direction of the radiobuttons in the grid cell is set with
the DirRadio parameter and can be horizontal (DirRadio = 0) or vertical (DirRadio = 1).

procedure AddRadio (ACol,ARow,DirRadio,IdxRadio: Integer; sl:TStrings);
function CreateRadio (ACol,ARow,DirRadio,IdxRadio: Integer): TStrings;
procedure RemoveRadio (ACol,ARow: Integer);

function IsRadio (ACol,ARow: Integer): Boolean;

function GetRadioIdx (ACol,ARow: Integer;var IdxRadio: Integer): Boolean;
function SetRadioIdx (ACol,ARow, IdxRadio: Integer): Boolean;

function GetRadioStrings (ACol,ARow: Integer): TStrings;

60| Page

tmssoftware

Example: adding radiobuttons maintained by the application

var

i:integer;

begin
radoptl
radoptl
radoptl
radoptl

radopt?2
radopt?2
radopt?
radopt?

:= TStringList.Create;

.Add ('Delphi');
Add ('C++Builder') ;
.Add ("JBuilder'") ;

:= TStringList.Create;

Add('std') ;
Add ("Prof ') ;
LAdd('Cc/st) ;

with AdvStringGridl do

begin
for I

begin

:= 1 to RowCount - 1 do

AddRadio(1,1i,0,-1,radoptl) ;
AddRadio (2,i,1,-1,radopt?) ;

end;
end;
end;

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

To get the radiobutton index, the GetRadioldx can be used which returns in the Radioldx parameter

the value of the selected radiobutton or -1 if no radiobutton is selected.

Example: getting the selected radiobutton

var

Idx: Integer;

if Grid.GetRadioIdx (2, 3,1dx) then

ShowMessage (‘Radiobutton ‘+inttostr (idx)+’ selected’);

The radiobuttongroups trigger two events : OnRadioClick and OnRadioMouseUp

RadioButton columns

Instead of having a radiogroup in a single cell, it is also possible to add a radiogroup in a column of
the grid. Following methods are provided to handle radio button groups in grid columns:

procedure AddRadioButton(ACol,ARow: integer; State:boolean);

procedure RemoveRadioButton(ACol,ARow: integer);

function HasRadioButton(ACol,ARow: integer): boolean;

function IsRadioButtonChecked(ACol,ARow: integer): boolean;

function SetRadioButtonState(ACol, ARow: integer; State: boolean): boolean;

procedure AddRadioButtonColumn(ACol: integer);

procedure RemoveRadioButtonColumn(ACol: integer);

procedure SetRadioButtonColumnindex(ACol, Index: integer);

61

| Page

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

tmssoftware.com

function GetRadioButtonColumnindex(ACol: integer): integer;
The radiobutton in a cell triggers the event : OnRadioButtonClick

In this sample code, two columns of 3 radiobutton cells are created:

procedure TForml.FormCreate (Sender: TObject) ;

begin
AdvStringGridl.Options := AdvStringGridl.Options + [goEditing];
AdvStringGridl.AddRadioButton (1,1, true)
AdvStringGridl.AddRadioButton(1l,2) ;
AdvStringGridl.AddRadioButton (1, 3) ;
AdvStringGridl.Cells[1,1] := 'France';
AdvStringGridl.Cells[1,2] := 'Germany';
AdvStringGridl.Cells[1,3] := 'United Kingdom';
AdvStringGridl.AddRadioButton (2,1, true);
AdvStringGridl.AddRadioButton (2, 2) ;
AdvStringGridl.AddRadioButton (2, 3) ;
AdvStringGridl.Cells[2,1] := 'Paris';
AdvStringGridl.Cells[2,2] := 'Berlin';
AdvStringGridl.Cells[2,3] := 'London';
AdvStringGridl.AutoSizeCol (1) ;
AdvStringGridl.AutoSizeCol (2) ;

end;

(7 Paris

i) France

i@ Germany i) Berlin

...........................

Button and BitButtons

Always visible buttons and buttons with a bitmap can be added to cells in the grid. The width and
height of these buttons can be set as well as the caption and/or glyph. This is achieved through
following methods:

procedure AddButton (ACol,ARow, bw, bh:
Integer;Caption:string;hal:TCellHalign;val:TCellValign) ;

procedure SetButtonText (ACol,ARow: Integer; Caption: string);

procedure PushButton (ACol,ARow: Integer;push: Boolean);
procedure RemoveButton (ACol,ARow: Integer);

function HasButton (ACol,ARow: Integer): Boolean;

62| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

procedure AddBitButton (ACol,ARow,bw,bh:Integer; Caption:string;
Glyph:TBitmap; hal:TCellHalign; val:TCellValign) ;

function CreateBitButton (ACol,ARow,bw,bh: Integer; Caption:string;
hal:TCellHalign; val:TCellValign): TBitmap;

Again the same approach for adding buttons with a bitmap maintained by the grid and one by the
application is provided with the AddBitButton and CreateBitButton method. For the first method
AddBitButton, the application needs to create, maintain and destroy the bitmap, for the
CreateBitButton method the grid creates, maintains and eventually destroys the bitmap.

The buttons fire the OnButtonClick event when clicked.

Note: by design, a button in a read-only cell is disabled. If this behavior is not desired, set
grid.ControlLook.NoDisabledButtonLook = True.

Progressbars and ProgressPie

Two types of progress indicators can be displayed in a grid cell: a rectangular progress bar and a
circular pie type progress indicator. The AddProgress method provides two color parameters, one
for the zero to current position part of the progress bar and one for the current position to end part
of the bar. With the AddProgressEx method, additional color settings for font color in both parts is
possible. The progress bar fills the complete cell and as such the position of the progress bar
reflects a value between 0 and 100 set in the cell text.

procedure AddProgress (ACol,ARow: Integer;FGColor,BKColor: TColor);

procedure AddProgressEx (ACol,ARow:
Integer;FGColor, FGTextColor,BKColor,BKTextColor: TColor) ;

procedure AddProgressFormatted (ACol,ARow:
Integer; FGColor, FGTextColor,BKColor, BKTextColor: TColor; Fmt: string; Min,
Max: Integer);

procedure RemoveProgress (ACol,ARow: Integer);
procedure AddAdvProgress (ACol,ARow: Integer;Min:integer=0;Max:integer=100);

procedure RemoveAdvProgress (ACol,ARow: Integer);

Example: adding progressbar and setting position to 50

Grid.AddProgress (2, 3,clRed,clWhite) ;
Grid.Ints([2,3] := 50;

A method is available AddProgressFormatted that allows to include the numeric formatting of the

value in the progressbar, as shown in this code snippet:

begin
AdvStringGridl.AddProgressFormatted (1,1, clRed,clBlack,clInfoBk,clBlue, '%d
kb/sec',0,1000) ;

63| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

AdvStringGridl.Ints[1,1] := 565;
end;

Sec

Adding an advanced progress bar:

Using grid.AddAdvProgress, it is possible to add a Windows themed style progressbar (available from
Windows XP or higher) with many additional options. The settings for the progressbar appearance
can be found under Grid.ProgressAppearance. This allows to have progressbars with colors
dependent on level of progress. This sample code adds three XP style progressbars to the grid with
default progress level color settings:

with AdvStringGridl do
begin
ProgressAppearance.CompletionSmooth := false;
AddAdvProgress (1,1);
Ints[1,1] := 50;
AddAdvProgress (1,2);

Ints[1,2] := 75;

AddAdvProgress (1, 3);

Ints[1,3] := 91;
end;

S0
5%
1%

L[

The circular pie type progress bar allows a compact visual progress indication in a cell that can
contain text as well. The value of the progress pie is set with the method SetProgressPie.

procedure AddProgressPie(ACol,ARow: Integer; Color: TColor; Value: Integer);
procedure SetProgressPie(ACol,ARow: Integer; Value: Integer);

procedure RemoveProgressPie(ACol,ARow: Integer);

Example: adding progress pie with text and position 25

Grid.AddProgressPie (2,3, clLime, 25) ;
Grid.Cells[2,3] := '25% completion’;

The progress pie is always left aligned in the cell and before the optional text in the cell.

64| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

@25%

Note: the style of the progress bar is also affected by the ControlLook property. This is discussed in
detail for the ControlLook property.

Range Indicator

A range indicator can show negative and positive ranges of value visually as bars in 2 different
colors, a color for negative range and a color for a positive range. The method to add a range
indicator is:

AddRangelndicator(Col,Row,Range,NegColor,PosColor,ShowValue);

with:
Col,Row: cell where to add range indicator
Range: min/max boundaries of range, ie. From -Range to +Range (default 100)
NegColor: color of negative range bar (default Red)
PosColor: color of positive range bar (default Black)
ShowValue: when true shows value (default False)
|
[
I
]
|
.
I
[
||
[]

Such range indicator is added with:

procedure TForml.FormCreate (Sender: TObject) ;

var
i: integer;
begin
for i := 1 to AdvStringGridl.RowCount - 1 do
begin
AdvStringGridl.AddRangeIndicator(1l,1,100,clRed, clGreen, false);
AdvStringGridl.Ints[1,i] := -100 + Random(200) ;
end;
end;
Balloons

A balloon appears when the mouse hovers over a cell. A balloon features 3 elements: a title, a text
and an icon. To add and remove balloons, following methods are available:

procedure AddBalloon (ACol,ARow: Integer; Title, Text:string; Icon:
TBalloonIcon) ;

65| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
procedure RemoveBalloon (ACol, ARow: integer);
function HasBalloon (ACol, ARow: integer): boolean;

function IsBalloon (ACol, ARow: integer; var Title, Text: string; var Icon:
TBalloonIcon) : boolean;

TBalloonlcon is defined as:

biNone: no icon

bilnfo: information icon
biWarning: warning icon
biError: error icon

Adding a balloon can be done with:

procedure TForm?.FormCreate (Sender: TObject) ;

begin
AdvStringGridl.Balloon.Enable := true;
AdvStringGridl.AddBalloon (2,2, 'Title A','Cell 2,2 is here', biError);
AdvStringGridl.AddBalloon (3,3, 'Title B','Cell 3,3 is here', biWarning);

end;

P

& Title B
Cell 3,3 is here

Note: in order to display a balloon, either via method AddBalloon or dynamically via the event
OnCellBalloon, grid.Balloon.Enable must be set to true. Further settings for the balloon tooltips are
available through grid.Balloon with properties:

AutoHideDelay: integer; Sets the delay in milliseconds to auto hide the
balloon.

BackgroundColor: TColor; Sets the background color of the balloon tooltip.

Enable: Boolean; When true, displaying balloon tooltips is enabled.

InitialDelay: integer; Sets the delay in milliseconds to wait before the

first balloon tooltip is shown.

ReshowDelay: integer; Sets the delay in milliseconds to wait before a
new balloon tooltip is shown.

TextColor: TColor; Sets the text color of the balloon tooltip.

Transparency: integer; Sets the transparency of the balloon tooltip.

66 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Using a vertical scrollbar per cell in TAdvStringGrid

When text is too large to fit in a cell, you could increase the cell size, ie. increase the row height,
the column width or both. This is not always practical, as the higher the row height is, the less rows
can be displayed. The same applies for the column width. The text could also be displayed cut-off
but this solution is also far from ideal. Now, an alternative solution is available with the capability
to add a vertical scrollbar to a cell. Any cell can as such have its own scrollbar and scroll separately
the cell's text or HTML formatted text. This feature is made available with the grid.AddScrollbar()
method. With this method a scrollbar is added to a cell. The scrollbar range and pagesize can either
be automatically set according to the size of the text in a cell or can be programmatically set.

This is an overview of the methods available:

grid.AddScrollbar (col,row: integer; AutoRange: Boolean) ;

Adds a scrollbar to cell col,row and when AutoRange is true, the scrollbar range and pagesize is
automatically calculated.

grid.RemoveScrollbar (col,row: integer);

Removes the scrollbar again from the cell

grid.HasScrollBar (col,row: integer): Boolean

Returns true when the cell col,row has a scrollbar

grid.HasAutoRangeScrollBar (col,row: integer): Boolean

Returns true when the cell col,row has an autorange scrollbar
grid.SetScrollPosition(col, row,position: integer);

Programmatically sets the position of the scrollbar in cell col,row
grid.GetScrollPosition (col, row,position: integer): integer;
Programmatically gets the position of the scrollbar in cell col,row

grid.SetScrollProp (col,row: integer; Prop: TScrollProp);

Sets the scrollbar range & pagesize

grid.GetScrollProp (col,row: integer): TScrollProp;

Gets the scrollbar range & pagesize

In the sample, these capabilities are demonstrated by adding very long HTML formatted text in 3

cells of the grid. In these cells, first an autorange scrollbar was added with:

AdvStringGridl.AddScrollBar (2,1,true);
AdvStringGridl.AddScrollBar (2,2, true);
AdvStringGridl.AddScrollBar (2,3, true);

67 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

il TAdvStringGrid dema 79 EBEIE

: Change scroll position of selected cell

IDE Description |
- Delphi is the premier development -
DEI p hl environment for software M

developers and database
application developers who need to
rapidly deliver high performance
and easy to maintain software

applications. &7

- ‘e Rapidly build data-driven B

C++ Bl."lder iapplications that connect to all your i
{data across multiple sources and ¥

itiers _

i Increase your productivity with
‘timesaving IDE and tools

iThe C++Builder development E
- - Delphi Prism is the new, Visual -
DEI p hl PI"ISITI Studio based solution that lets you M

use your existing Delphi
programming skills to build .NET
applications, and take advantage of
the latest.MET technologies such as

scroll: 2:2 position 131 in range [0..422]

When text is set in a cell, the scrollbar will then appear when necessary. In this sample, it is also
demonstrated how the scrollbar position can be programmatically set. This is done from an UpDown
control for the cell that is selected. Upon cell selection, the UpDown control is initialized to the
cell's scrollbar range:

procedure TForm2.AdvStringGridlSelectCell (Sender: TObject; ACol, ARow:
Integer;
var CanSelect: Boolean) ;

var
sp: TScrollProp;

begin
if AdvStringgridl.HasScrollBar (Acol,ARow) then
begin
sp := AdvStringgridl.GetScrollProp (ACol,ARow) ;
updownl .Min := 0;
updownl.Max := sp.Range;
updownl.Position := sp.Range -
AdvStringgridl.GetScrollPosition (ACol,ARow) ;
end;
end;

procedure TForm2.UpDownlChanging (Sender: TObject; var AllowChange:
Boolean) ;

68| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

var
sp: TScrollProp;

begin

if AdvStringGridl.HasScrollBar (AdvStringgridl.Col, AdvStringGridl.Row)
then

begin

AdvStringGridl.SetScrollPosition (AdvStringgridl.Col,

AdvStringGridl.Row, updownl.Max - updownl.Position);

end;
end;

69| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid HTML formatted cells

The cells in TAdvStringgrid have support for various HTML tags through which fine control of the
display is possible. The HTML formatting support is by default enabled but can be turned off by
setting the property EnableHTML to False. The supported tags form a subset of the HTML tags and
are further named as mini html

Supported tags

B : Bold tag
 : start bold text
 : end bold text

Example : This is a test

U : Underline tag
<U> : start underlined text
</U> : end underlined text

Example : This is a <U>test</U>

I : Italic tag
<I> : start italic text
</I> : end italic text

Example : This is a <I>test</I>

S : Strikeout tag
<S> : start strike-through text
</S> : end strike-through text

Example : This is a <S>test</S>

A : anchor tag

 : text after tag is an anchor. The 'value' after the href
identifier is the anchor. This can be an URL (with ftp,http,mailto,file identifier) or any text.
If the value is an URL, the shellexecute function is called, otherwise, the anchor value can
be found in the OnAnchorClick event

 : end of anchor

Examples :

This is a test
This is a test
This is a test

Hints for hyperlinks defined in HTML can also be directly be set with the Title attribute. If
no Title attribute is specified, the HREF value is used as hint value. Hyperlink hints are
enabled when grid.AnchorHint is set to true and grid.ShowHint is set to true.

& cell bypgglink

TMS software

Example:

70| Page

mailto:myemail@mail.com

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
The hint for this cell is set by:

advstringgridl.Cells[1,3] := 'A cell <a href="http://www.tmssoftware.com"
title="TMS software">hyperlink";

o FONT : font specifier tag
 : specifies
font of text after tag.
with
- face : name of the font
- size : HTML style size if smaller than 5, otherwise pointsize of the font
- color : font color with either hexidecimal color specification or Borland style color name,
ie clRed,clYellow,clWhite ... etc
- bgcolor : background color with either hexidecimal color specification or Borland style
color name
 : ends font setting

Examples :
This is a test
This is a test

e P : paragraph
<P align="alignvalue" [bgcolor="colorvalue"]> : starts a new paragraph, with left, right or
center alignment. The paragraph background color is set by the optional bgcolor parameter.
</P> : end of paragraph

Example : <P align="right">This is a test</P>

Example : <P align="center">This is a test</P>

Example : <P align="left" bgcolor="#ff0000">This has a red background</P>
Example : <P align="right" bgcolor="clYellow">This has a yellow background</P>

e HR: horizontal line
<HR> : inserts linebreak with horizontal line

e BR: linebreak

 : inserts a linebreak

e BODY : body color / background specifier
<BODY bgcolor="colorvalue" background="imagefile specifier"> : sets the background color of
the HTML text or the background bitmap file

Example :
<BODY bgcolor="clYellow"> : sets background color to yellow
<BODY background="file://c:\test.bmp"> : sets tiled background to file test.bmp

¢ IND : indent tag
This is not part of the standard HTML tags but can be used to easily create multicolumn text
<IND x="indent"> : indents with "indent” pixels

Example :
This will be <IND x="75">indented 75 pixels.

e IMG: image tag
<IMG src="specifier:name” [align="specifier"] [width="width"] [height="height"]
[alt="specifier:name"] > : inserts an image at the location

specifier can be :

71| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

idx : name is the index of the image in the associated imagelist

ssys : name is the index of the small image in the system imagelist or a filename for which
the corresponding system imagelist is searched

Isys : same as ssys, but for large system imagelist image

file : name is the full filename specifier

res : name of a resource bitmap (not visible at design time)

no specifier : name of image in an PictureContainer

Optionally, an alignment tag can be included. If no alignment is included, the text
alignment with respect to the image is bottom. Other possibilities are : align="top" and
align="middle"

The width & height to render the image can be specified as well. If the image is embedded
in anchor tags, a different image can be displayed when the mouse is in the image area
through the Alt attribute.

Examples :

This is an image

This is an image and another one
This is an image

This is an image

This is an image

e SUB : subscript tag

<SUB> : start subscript text
</SUB> : end subscript text

Example : This is ⁹/₁₆ looks like /16
e SUP : superscript tag

<SUP> : start superscript text
</SUP> : end superscript text

e BLINK : blink tag (the EnableBlink needs to be set to true to enable this)

<BLINK> : start blinking text
</BLINK> : stop blinking text

Example : This is <BLINK>blinking red</BLINK>text.

e UL: list tag
 : start unordered list tag
 : end unordered list

Example :

List item 1
List item 2

 Sub list item A
 Sub list item B

List item 3

72 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

e Ll: list item
 : new list item

e SHAD : text with shadow
<SHAD> : start text with shadow
</SHAD> : end text with shadow

e Z: hidden text

<Z> : start hidden text
</Z> : end hidden text

e HI: hilight

<HI> : start text hilighting
</HI> : stop text hilighting

e E: Error marking

<E> : start error marker
</E> : stop error marker

e Special characters
Following standard HTML special characters are supported :

< : less than : <

> : greater than : >
& : &

" : "

 : non breaking space
™ : trademark symbol
€ : euro symbol

§ : section symbol
© : copyright symbol
¶ : paragraph symbol

HTML formatting related events

The hyperlinks that can be added inside a cell cause following events when the mouse is over or
clicked on hyperlink. The events are :

OnltemAnchorClick : triggered when a hyperlink is clicked in a cell
OnltemAnchorEnter : triggered when the mouse enters a hyperlink
OnltemAnchorExit : triggered when the mouse leaves a hyperlink

OnltemAnchorHint : triggered when the mouse is over a hyperlink to query the hint for the link
(this is enabled if the property grid.AnchorHint is set true)

73| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Example: Handling hyperlink clicks in TAdvStringGrid

A hyperlink is added with

grid.Cells[0,0] :=
‘This is a hyperlink<a>’;

When the mouse clicked on the hyperlink, the OnltemAnchorClick is called with a reference to
the cell coordinates and the Anchor parameter is ‘myhyperlink’. The AutoHandle parameter is

by default true and causes that the grid will automatically open the default application for the
hyperlink. Setting this parameter AutoHandle allows custom handling of the hyperlink click.

74| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid HTML forms

Combining multiple buttons in a cell, adding more than one checkbox in a cell, editing different
items in a cell, it is possible with TAdvStringGrid and its mini HTML forms. Mini HTML forms bring a
solution allowing unlimited capabilities to specify cell contents and behaviour.

TAdvStringgrid, controls can be specified through a the tag <CONTROL>
The CONTROL tag takes following parameters:

<CONTROL ID="ControlID" VALUE="ControlValue" TYPE="ControlType" WIDTH="ControlWidth"
MAXLEN="ControlMaxLenValue”>

with:

ControllD = unique ID string per cell for the control

ControType = "EDIT" or "CHECK" or "RADIO" or "COMBO" or "BUTTON"

ControlWidth = width of the control in pixels

ControlValue = value of the control depending on the type :

ControlMaxLenValue = optional maximum edit length of edit control. When MAXLEN attribute is not
specified or value of ControlMaxLenValue is 0, string length is not limited.

"TRUE", "FALSE" for checkboxes and radiobuttons
Button caption for button control
Text value for edit and combobox controls

With this information, forms can be specified like:

with AdvStringGridl do

begin
Cells[1l,ARow] := '<CONTROL TYPE="CHECK" WIDTH="15" ID="CK1"> Patient
information :
' +
'Name : <CONTROL TYPE="EDIT" WIDTH="80" VALUE="" ID="ED1"> '+
'Prename : <CONTROL TYPE="EDIT" WIDTH="80" VALUE="" ID="ED2"> ' +

'<CONTROL TYPE="BUTTON" WIDTH="80" VALUE="Clear" ID="BTN1">

' +

' Available : <CONTROL TYPE="COMBO"
WIDTH="60" ID="CO1l"> ' +

' Payment : <CONTROL TYPE="COMBO"
WIDTH="80" VALUE="" ID="CO2"> '+

' Last visit : <CONTROL TYPE="EDIT"
WIDTH="80" VALUE="" ID="ED3">"';
end;

Getting and setting control values is done with the property grid.ControlValues[Col,Row,ID]: string;

Patient information :

N |prename : Pretamet |
4 awailable : QPayment | |WISA [v] [‘;] Lask visit ¢ |1J06/2002

Patient information :

— |Nam82 |Prename : |PreNam82 |
.l Bvailable QPayment : [;j Lask visit ;

Mare

75| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Example: setting form values through the control ID and ControlValues property:

with AdvStringGridl do

begin
ControlValues|[1l,ARow, '"CK1'"'] := 'TRUE';
ControlValues|[1l,ARow, '"ED1'] := '"Name'+IntToStr (ARow) ;
ControlValues|[1l,ARow, '"ED2'] := '"PreName'+IntToStr (ARow) ;
ControlValues|[1l,ARow, 'CO1"'"] := 'MO';
ControlValues|[1l,ARow, 'CO2'"'] := 'VISA';
ControlValues|[1l,ARow, '"ED3'] := DateToStr (Now + ARow) ;

end;

The events that are used for handling form controls are :

OnControlClick : event triggered when a mini HTML form control is clicked
OnControlCombolist : event querying the values for a combobox as well as its style
OnControlEditDone : event triggered when editing of the mini HTML form control starts

All events return the cell for the control, the control ID, type and value. For the
OnControlCombolList event, a stringlist is passed as parameter where the values that need to be
displayed in the combobox can be added. With the Edit parameter, the combobox can be set as
either dropdownlist (Edit = False) or as editable combobox (Edit = true).

Example: Using the OnControlCombolList event for setting combobox items in a form:

procedure TForml.AdvStringGridlControlComboList (Sender: TObject; ARow,
ACol: Integer; CtrlID, CtrlType, CtrlVal: String; Values: TStringList;
var Edit: Boolean; wvar DropCount: Integer);

begin

Values.Clear;

if CtrlID = 'COl' then

begin
Values.Add ('MO") ;
Values.Add ('TU") ;
Values.Add ('WE") ;
Values.Add ('TH") ;
Values.Add ('FR") ;
Values.Add ('SA'");

Values.Add ('SU") ;

Edit := False; // combo dropdownlist
end;
if CtrlID = 'CO2' then
begin
Values.Add ('VISA'") ;
Values.Add ('AMEX") ;
Values.Add ('MASTERCARD") ;
Values.Add ('CASH'") ;

Values.Add ('N/A'") ;
Edit := True; // combo dropdown edit
end;
end;

76 | Page

TMS SOFTWARE
tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid miscellaneous display control

Showing active cell in fixed cells

With the property ActiveCellShow set true, it is possible to indicate the fixed row and column cell
for column and row where the focus cell is found, in a different color and different font. The
background color of the fixed cell is set with ActiveCellColor, the font is set with the ActiveCellFont
property. For normal display, the fixed cell uses the FixedColor background color and FixedFont for
text.

Note: when active cell display is activated and multiple fixed columns or fixed rows are shown in
the grid, the active cells are displayed on the innermost fixed columns/rows.

Background gradient or bitmap

TAdvStringGrid can show a bitmap or gradient as background in fixed cells only, normal cells only or
for all cells. The background bitmap is set with the grid.BackGround.Bitmap property. The selection
for which cells the background should be displayed is set with grid.BackGround.Cells. This
background bitmap can be tiled (grid.BackGround.Display = bdTile) or displayed at a fixed
(grid.BackGround.Display = bdFixed) position (set with grid.BackGround.Top and
grid.BackGround.Left)

To show a background gradient, set grid.Background.Display to bdGradientVert or bdGradientHorz
and select gradient start and end color with grid.Background.Color and grid.Background.ColorTo.

Bands
Banding of alternate colors is enabled in TAdvStringGrid with setting grid.Bands.Active = True.

The alternating colors are set with grid.Bands.PrimaryColor and grid.Bands.SecondaryColor. The
number of rows to display in primary color is set with grid.Bands.PrimaryLength, the number of rows
to display in secondary color is set with grid.Bands.SecondaryLength. Finally, it can be selected
whether the banding should be printed or not with the grid.Bands.Print property.

Note: when using a descendent class such as TAdvColumnGrid or TDBAdvGrid, it is required to set
the property ShowBands = true for the columns where bands should be displayed.

Control look

Various settings are combined here that control how inplace controls look in the grid. The
ControlLook property has following subproperties:

CheckAlwaysActive: Boolean; When true, a checkbox is always displayed as active,
irrespective of the readonly state of the cell

CheckedGlyph: TBitmap; Sets the glyph for a custom checked checkbox
CheckSize: Integer; Sets the size of a checkbox
Color: TColor; Sets the color for Borland style checkbox and

radiobuttons

CommentColor: TColor; Sets the default comment triangle indicator color

ControlStyle: TControlStyle; See below

77 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

DropDownAlwaysVisible: Boolean;

When true, the combobox dropdown button is always
displayed, irrespective of the editing mode

FixedDropDownButton: Boolean;

When true, a fixed cell has an additional right side
dropdown button when the mouse hovers the cell

FixedGradient*: TColor;

Series of properties that control the top & bottom
gradient of the fixed cell in normal, hot & down
state.

FlatButton: Boolean;

When true, inplace buttons are displayed in flat style

NoDisabledButtonLook: Boolean;

By default, buttons added in the grid in read only
cells are shown as disabled. To override this, set this
property to true.

NoDisabledCheckRadioLook: Boolean

By default, checkboxes and radiobuttons added in the
grid in read only cells are shown as disabled. To
override this, set this property to true.

ProgressBorderColor: TColor;

Sets the color of a progress bar border

ProgressMarginX: Integer;

Horizontal margin on left and right for the
progressbar in a cell

ProgressMarginY: Integer;

Vertical margin on top and below for the progressbar
in a cell

ProgressXP: Boolean;

When true, the progressbar is drawn with the
Windows XP visual style

RadioAlwaysActive: Boolean;

When true, a radiobutton is always displayed as
active, irrespective of the readonly state of the cell

RadioOffGlyph: TBitmap;

Sets the glyph for a custom unchecked radiobutton

RadioOnGlyph: TBitmap;

Sets the glyph for a custom checked radiobutton

RadioSize: Integer;

Sets the size of a radiobutton

SpinButtonsAlwaysVisible: Boolean;

When true, buttons of spin editor inplace editors are
always visible, irrespective of the editing state of a
cell.

UnCheckedGlyph: TBitmap;

Sets the glyph for a custom unchecked checkbox

The ControlStyle can have following values:

TControlStyle = (csClassic,csFlat, csWinXP,csBorland, csTMS, csGlyph, csTheme) ;
With:
csBorland Borland style checkboxes and radiobuttons

78 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

csClassic Normal Windows control look

csFlat Flat control look

csGlyph Use glyphs defined in ControlLook for checkboxes and radiobuttons

csTheme Use Windows theme API (available in Windows XP or later) to draw checkboxes,
radiobuttons, buttons, ...

csTMS TMS style checkboxes and radiobuttons

csWinXP Fixed Luna style control look (works on all Windows versions)

Global cell text appearance settings

Several grid properties affect global look of cell text which are:

AutoNumAlign

When true, automatically selects right alignment for cells containing numeric data
only

EnhTextSize

When true, text that does not fit in the grid cell is displayed with end ellipsis

MultiLineCells

When true, cell text containing line feeds is displayed on multiple lines

URLFull When true, the protocol specifier is displayed along with the hyperlink, otherwise
it is used internally but not displayed

URLShow When true, cell text starting with protocol specifiers http://, ftp://, nntp://,
mailto: is displayed in the URLColor and underlined

WordWrap When true, cell text is wordwrapped. This can be dynamically set for individual

cells by using the event OnGetWordWrap. Note that when WordWrap is enabled,
text in the cell is always vertically top aligned. The Windows wordwrap text
drawing API can only display wordwrapped text top aligned.

Cell selection

By default, selected cells are displayed in the clHighLight background color and clHightLightText
font color. Set grid.ShowSelection = false if the grid should not display selected cells. Settings that
control display of selected cells are:

SelectionColor: TColor;

Sets the background color of selected cells

SelectionColorTo: TColor;

When different from clNone, sets the gradient end color of a
selected cell.

SelectionMirrorColor: TColor;

When different from clNone, sets the bottom gradient start color
of a selected cell.

SelectionMirrorColorTo: TColor;

When different from clNone, sets the bottom gradient end color
of a selected cell.

79| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

SelectionRectangle: Boolean; When true, a wide border rectangle is displayed around selected
cells
SelectionResizer: Boolean; When true, the selection rectangle is displayed with rectangular

grip in bottom right corner to resize the selection

SelectionRTFKeep: Boolean; When true, RTF text colors are not affected by selection text
color in selected cells

SelectionTextColor: TColor; Sets the text color of selected cells

ShowSelection: Boolean; When true, selected cells are displayed in SelectionColor and
SelectionTextColor

The selection in the grid can be hidden temporarily by the method grid.HideSelection and unhidden
later with grid.UnHideSelection.

Note: by default, when the SelectionTextColor is set to a color different from clNone, the
SelectionTextColor has priority over the font color of the cell itself. This is to ensure that for the
combination SelectionColor/SelectionTextColor, the cell text is always guaranteed to be visible. If it
is not desirable that the selection text color is different from the cell font color, set
grid.SelectionTextColor to clNone. With this setting, the cell text color will be always used.

Advanced topic: Smart cell resizing

With SelectionResizer and SelectionRectangle set true, the selection can be resized by dragging the
bottom left corner. If the property grid.Navigation.AllowSmartClipboard is set true as well, the
resizing of the selection will cause the smart clipboard operation to try to fill the new selection
based on the information found in the first selected cells. It will try to guess the data format of the
cells of the original selection and try to find the delta between 2 or more cells of the original
selection and apply this delta for completion for the new selection.

Example: original selection

N T B WV]

Resized to new selection

80| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

R T R LN

1
I
3
R |

Hilighting and marking errors in cells

With the <HI> tag and <E> tag an arbitrary part of the text can be highlighted or underlined with
error lines. TAdvStringGrid has a range of methods that allow to automatically highlight or
unhighlight text in cells or mark or unmark text in cells. The following set of methods is available
for this:

function HilightText (DoCase: Boolean; S,Text: string) :string;
function UnHilightText (S:string) :string;
procedure HilightInCell (DoCase: Boolean; Col,Row: Integer; HiText: string);

procedure HilightInCol (DoFixed,DoCase: Boolean; Col: Integer; HiText:
string);

procedure HilightInRow (DoFixed,DoCase: Boolean; Row: Integer; HiText:
string) ;

procedure HilightInGrid (DoFixed,DoCase: Boolean; HiText: string);

procedure UnHilightInCell (Col,Row: Integer);

procedure UnHilightInCol (DoFixed: Boolean; Col: Integer);

procedure UnHilightInRow (DoFixed: Boolean; Row: Integer);

procedure UnHilightInGrid (DoFixed: Boolean);

function MarkText (DoCase: Boolean; S,Text: string) :string;

function UnMarkText (S:string) :string;

procedure MarkInCell (DoCase: Boolean; Col,Row: Integer; HiText: string);
procedure MarkInCol (DoFixed,DoCase: Boolean; Col: Integer; HiText: string);
procedure MarkInRow (DoFixed,DoCase: Boolean; Row: Integer; HiText: string);
procedure MarkInGrid (DoFixed,DoCase: Boolean; HiText: string);

procedure UnMarkInCell (Col,Row: Integer);

procedure UnMarkInCol (DoFixed: Boolean; Col: Integer);

procedure UnMarkInRow (DoFixed: Boolean; Row: Integer);

81| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

procedure UnMarkInGrid (DoFixed: Boolean) ;
procedure RemoveMarker (ACol,ARow: Integer);

procedure RemoveAllMarkers;
Example: highlighting TMS in a cell

Grid.Cells[2,3] := ‘This is TMS software’;
Grid.HilightInCell (False, 2,3, TMS’);

This will display the cell as :
This is software
Later the highlighting can be removed by calling grid.UnHiLightIinGrid(False). This will remove

highlighting in any cell of the grid.

Automatic sizing and numbering of columns and rows

TAdvStringGrid has several built-in methods to let the grid automatically adapt the column width or
row height to fit the text of cells.

Methods:

procedure AutoSizeCol (Col: integer);

Adapts the width of column Col to have all text in cells in this column fit.

procedure AutoSizeColumns (DoFixedCols: Boolean; Padding: integer);

Adapts the width of all columns (including fixed columns when DoFixedCols = true) to the width of
the text. An additional parameter Padding can be used to add some extra padding width to the
column’s width.

procedure AutoFitColumns (DoFixedCols: Boolean = true);

Changes the width of all columns proportionally to ensure all columns fill the entire width of the
grid. When DoFixedCols = false, the size of the fixed columns is not affected, only the size of the
normal columns is proportionally changed.

procedure AutoSizeRow (Row: integer);
Adapts the height of row Row to have all text in cells in this row fit.
procedure AutoSizeRows (DoFixedRows: Boolean; Padding: integer);

Adapts the height of all rows (including fixed rows when DoFixedRows = true) to the height of the
text. An additional parameter Padding can be used to add some extra padding width to the row’s
height.

procedure AutoNumberCol (Col: integer);

82| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Fills the rows of a column with a series of numbers, incrementing from first row to total number of
rows. The grid public property AutoNumberOffset sets the value of the first row and the property
AutoNumberStart sets the first row index from where auto numbering should be applied.

procedure AutoNumberRow (Row: integer);

Fills the columns of a row with a series of numbers, incrementing from first column to total number
of columns. The grid public property AutoNumberOffset sets the value of the first column and the
property AutoNumberStart sets the first column index from where auto numbering should be
applied.

83| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid nodes

A multi-level hierarchy row expand/contract functionality can be added to TAdvStringGrid through
Nodes. Working with nodes involves three topics:

e putting nodes in the grid
e node appearance
e reacting to node click events

Following functions are available to work with nodes in the grid:
procedure AddNode (aRow, Span:integer) ;

Adds a node in the grid spanning Span rows

procedure RemoveNode (aRow:integer) ;

Removes a node at row aRow.

function IsNode (aRow:integer) :boolean;

Returns true if the row contains a node

function GetNodeState (ARow:integer) :boolean;
Returns true if the node is in contracted state

procedure SetNodeState (ARow:integer;value:boolean) ;
Sets the state of node

procedure ExpandNode (ARow:integer) ;

Expands the node at row ARow.

procedure ContractNode (ARow:integer) ;

Contracts the node at row ARow

procedure ExpandAll;

Expands all nodes

procedure ContractAll;

Contracts all nodes

function GetNodeSpan (aRow: Integer): Integer:
Retrieves the number of rows a node spans

function GetNodelevel (aRow: Integer): Integer;
Retrieves the depth level of a node

procedure InsertChildRow (ARow: Integer);

84| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
Inserts a new row within the span of a node
procedure RemoveChildRow (ARow: Integer);
Removes a child row from a node

Everything starts by adding a node to a grid and this is done with the AddNode method. The first
parameter is what we call the visible row position in the grid where you want to add a node. When
working with hidden rows, there is a difference between visible row position and real row position
which takes the hidden rows into account. (Whenever you wan to map the visible row position to a
real row position, use the RealRowlndex method) The second parameter in the AddNode method is
the span of the node, that is, the number of rows to expand or contract when clicking this node. If
this span parameter is zero, the node will automatically expand or contract to the next found node
in the grid.

The RemoveNode and IsNode methods are simply doing what their names refer to. Also notice in this
case, that the row refers to the visible row position!

With these function, you can start adding simple row expand/contract functionality to your grid. In
the example procedure below, nodes are inserted to allow expansion or contracting of equal cells in
column 1:

var
i,j:integer;
begin
with advstringgridl do
begin
I :=1;
J = 1;
while (I < RowCount - 1) do
begin
while (Cells[1,J] = Cells[1,J + 1]) and (J < RowCount - 1) do
Inc(J);
if (I <> J) then
AddNode (I,J — I + 1);
I :=J + 1;
J = I
end;
Row := 1;
Col := 1;
end;
end;

In order to programmatically expand or contract nodes, either the function GetNodeState,
SetNodeState or ExpandNode and ContractNode are available. The difference is the used row
mapping. GetNodeState and SetNodeState work with this visible row index, while ExpandNode and
ContractNode work with the real row index. Often, you will want to maintain the exact real row
position of the node to expand and use the ExpandNode or ContractNode method. This is because
the visible row position can change all the time by user interaction, while the real row position is
under program control:

procedure TForml.Button3Click(Sender: TObject) ;
begin

AdvStringGridl .ExpandNode (RealRow) ;
end;

procedure TForml.Button4Click (Sender: TObject) ;

begin
AdvStringGridl.ContractNode (RealRow) ;

85| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

end;

A second topic involved in using nodes, is the node appearance. Nodes always appear in the first
column (index 0) and can be one of 4 types : cnflat, cn3D, cnglyph or cnXP. A flat node is simply a
rectangle with the well known + / - sign in it. The 3D node type is a raised or sunken rectangle
while you can also specify your own glyph for the expand or contract state. The appearance of the
node is controlled through the CellNode property of TAdvStringGrid. You can speficy here the glyphs
as well as the color of the flat and 3D node.

Further properties of CellNode are:

ShowTree: Boolean; when true, a tree connecting the nodes is drawn

ShowTreeFull: Boolean; when true, a tree is draw horizontally till the right side of the cell
TreeColor: TColor; sets the color of the tree lines.

Multilevel nodes

T
w m | a s w | R

—_
LI R el |

TAdvStringGrid supports multi level nodes. This is done by inserting nodes within the span of an
existing (parent) node. It is required that the span of a child node is within the span of the parent
node. If this is not the case, the multi-level node setup is incorrect and will not work properly. The
above node scheme is obtained by following code:

advstringgridl.AutoNumberCol (1) ;

advstringgridl.AddNode (1,10); // main node
advstringgridl.AddNode (3, 2) ; // child node 1
advstringgridl.AddNode (5,5); // child node 2
advstringgridl.AddNode (6,2); // child node of child node 2

Last but not least, four event handlers give feedback on user node expansion or contraction through
the OnExpandNode, OnContractNode and OnBeforeExpandNode and OnBeforeContractNode events.
For the OnExpandNode, OnContractNode, two additional parameters come with this event handler:
the visible row index of the node clicked as well as the real row index of this node:

procedure TForml.AdvStringGridlExpandNode (Sender: TObject; ARow,
ARowReal: Integer)
begin
ShowMessage (‘Expand : ' + IntToStr (ARow) + '-' + IntToStr (ARowReal));
end;

86| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

For the OnBeforeExpandNode and OnBeforeContractNode and additional parameter Allow by
reference is available with which it can be dynamically controlled whether the node can
contract/expand or not.

87| Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid filtering

Basic filtering

With the filtering capabilities in TAdvStringGrid, showing only a filtered set of rows in the grid is
easy. Two properties are used for filtering. First there is the FilterData property, which is a
TCollection of filter conditions for each column and second is the property FilterActive through
which filtering is performed when set true.

Taking a closer look at the FilterData collection, this is a TCollection of elements with following
properties:

Column: Integer; integer value, setting the column for which to apply the filter condition
Condition: string; this is a string setting the filtering condition

CaseSensitive: Boolean; sets whether the filter is case sensitive or not

Data: TFilterCells: controls what specific cell data the filter should apply to (see below)
Suffix: string; sets the suffix string to ignore for the filtering condition

Prefix: string; sets the prefix string to ignore for the filtering condition

Operation: TFilterOperation; sets the logical operation between multiple filters

The Condition property can contain a condition in following formats:

substring filtering:

S*, S? : * or ? denote multi or single character matches

>, <, >= =< larger than, less than, larger or equal, less or equal (when data is numeric or a date,
comparison take place based on numeric data or date based, otherwise on alphabetic comparisons)
=, | : equal or not equal

&, " : logical AND, logical OR

Thus, an expression : >20 & <30 is a valid filtering expression as well as !A*
The filter can also detect dates, ie. It can use something like : >10/4/2003 & <10/5/2003

Note: when the filter condition includes a space character or logical expression character, use
quotes, for example, this filter condition filters on ‘C&A’ (and not C and A) by setting

Condition := ‘”C&A”’;

When the Prefix or Suffix property is set, this string is ignored as start or end string part of the cell
to perform the match with. For example, if cells display a value as currency (ie. 1509), setting the
Suffix to ‘S’ will allow to ignore the end ‘S’ character and enable to specify a numeric based filter
condition (ie. >100)

By default, setting multiple filter conditions is a logical AND operation (the Operation property is by
default foNone). For speed reasons, by default a short-circuit evaluation is done. When choosing
another logical operation, an extensive evaluation is done applying the choosen operation between
each successive filter.

Example:

To apply a filter on 2 columns where rows should be accepted when the condition for column A
matches or the condition for column B matches, setup is:

with filter.Add do

begin
Condition := ConditionForA;

88| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Column := A;
Operation := foAND; // perform AND with default True result
end;

with filter.Add do

begin

Condition := ConditionForB;

Column := B;

Operation := foOR; // perform OR with previous filter
end;

To start the actual filtering, the property FilterActive is first set to False to disable all filtering.
After this, the FilterDate collection is setup and then FilterActive is set to True to apply the filter.

If the filter condition is set in the first row for each column, setting up and applying the filter
becomes:

var
i:integer;
begin
with AdvStringGridl do
begin
FilterActive := False;
Filter.Clear; // clearing any previous filter settings
for I := FixedCols to ColCount - 1 do
begin
if (Cells[i,0]<>"") then // add filter for column if filter present
with Filter.Add do
begin
Condition := Cells[i,0];
Column := 1i;
CaseSensitive := False; // filter 1is not case sensitive
end;
end;
FilterActive := True; // applying the filter
end;
end;

By default, filtering is based on displayed cell text, ie. the value that was possible dynamically set
with the event OnGetDisplText. That means that when virtual cells are used, the filtering will be
based by default on the virtual cell text. To enable the filtering to happen for the actual cell data,
set FilterData.Data to fcNormal. Other than virtual or normal cell text, it is also possible to specify:

fcStripHTML: filtering is based on displayed cell text but with HTML tags removed

fcCalculated: this applies in first place to TadvSpreadGrid to enable filtering on formula itself or the
formula result.

fcRow: a row matches the filter when the string set in the condition is found in any of the cells of a
row.

This filter will show all rows where any of its columns contains the word “text”:

with grid.Filter.Add do
begin
Condition := ‘text’;
Data := fcRow;
end;
grid.FilterActive := true;

89| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Filter dropdown in column header

To make filtering in the grid available from the Ul, each column header can display a filter
dropdown button from where a filter can be choosen. Upon selection of a filter from the dropdown,
it is applied to the grid. The settings that control the display of the filter are grouped under
grid.FilterDropDown. Following settings are available via the grid.FilterDropdown property:

grid.FilterDropDown.AutoSize: Boolean

When true, the size of the dropdown adapts to the text in the list
grid.FilterDropDown.Color: TColor

Sets the background color of the dropdown list
grid.FilterDropDown.ColumnWidth: Boolean

When true, the filter dropdown with is equal to the column width
grid.FilterDropDown.Font: TFont

Sets the font of the filter dropdown list
grid.FilterDropDown.Glyph: TBitmap

Sets the glyph displayed in the column header indicating a filter is available
grid.FilterDropDown.Height: integer

Sets the height of the dropdown list

grid.FilterDropDown.Width: integer

Sets the width of the dropdown list

The content of the filter dropdown list is set via the event grid.OnGetColumnFilter. This event
passes a TStringList that can be filled with filter specifiers. Note that the filter specifiers can be
friendly names. It is only from the OnFilterSelect event that the real filtercondition must be
applied. The code snippet below shows how the filter is set for different columns in the grid:

procedure TForm2.AdvStringGridlGetColumnFilter (Sender: TObject; Column:
Integer; Filter: TStrings);

begin
case Column of
1:
begin
Filter.Add('Clear'");
Filter.Add('Within range');
Filter.Add ('Exceptions');
end;

2:
begin

90| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Filter.Add('Clear'");
Filter.Add ('>50");
Filter.Add ('<50");

end;
3:
begin
Filter.Add('Clear'");
Filter.Add ('>20");
Filter.Add ('<20");
end;
4
begin
Filter.Add('Clear'");
Filter.Add('>20");
Filter.Add('<20");
end;
end;
end;

When a selection is made from the filter dropdown list, the event OnFilterSelect is triggered. This
returns the column, the index of the filter and the friendlyname of the filter. Via the parameter
FilterCondition, the real filter condition can be set. In the code shown here, the OnFilterSelect
converts the filter friendlyname "Clear” to an empty filter condition and it also sets a filter
condition for column 1 for friendly names "Within range” and "Exceptions”. It also updates the
column header to show the filter that is applied.

procedure TForm?.AdvStringGridlFilterSelect (Sender: TObject; Column,
ItemIndex: Integer; FriendlyName: string; var FilterCondition: string);

begin
if FilterCondition = 'Clear' then
FilterCondition := '"';

if (Column = 1) then

begin
case ItemIndex of
1: FilterCondition := '>20 & <80';
2: FilterCondition := '<20 | >80"';
end;

end;

AdvStringgridl.Cells[Column, 0] := FriendlyName;
end;

91| Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Within range | >50 ?IHD ?I:.‘ZD ‘.rl
27 %ﬁéﬂg 31 16

45 Exceptions a7 2

34 81 81 14

59 88 66 11

76 %8 49 3

EL a9 23 19

43 68 75 3

61 80 % 16

By default, the filter is displayed in the first fixed row of the grid. If the grid has multiple fixed
rows, it possible to control on what fixed row the filter dropdown is displayed with the property
grid.FilterDropDownRow.

Incremental filters

Incrementally applying filters can be done by calling grid.ApplyFilter several times after each other.
To remove the last filter or to remove all filters call grid.RemoveLastFilter or grid.RemoveAllFilters
respectively. In the code snippet below, two filters are applied after each other and finally the last
filter operation is removed, leaving the result of the first applied filter:

procedure TForm?.ButtonlClick(Sender: TObject) ;
begin
with advstringgridl.Filter.Add do
begin
condition := '>50";
column := 1;
end;

advstringgridl.ApplyFilter;

with advstringgridl.Filter.Add do
begin

condition := '<75";

column := 1;
end;

advstringgridl.ApplyFilter;

advstringgridl.RemovelLastFilter;
end;

Narrow down filtering

Another filtering the Narrow-Down capability. With this method, the grid can filter in incremental
steps to find all rows with a specific word or all rows that have a specific word in one column. In the
demo, the edit control's OnChange method event handler just calls grid.NarrowDown(searchvalue).
This causes that the grid will always show all rows containing the word in the edit control as the

92 | Page

tmssoftware.com

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

user types the search specification in the edit control. The checkbox controls whether the search
for a word in a row is done for the full row or restricted to one column only (column 1 in this case):

procedure TForml.EditlChange (Sender:

begin

if Checkboxl.Checked then

AdvStringGridl .NarrowDown (Editl.Text,

else

TObject) ;

1)

AdvStringGridl.NarrowDown (Editl.Text) ;

end;

[@ TAdvStringGrid demo 78 SN
coupe [Marrow down in column 1 only
-
Audi ETTCuupe 1731 132 |4 180 | 1235000 |0 Lo
BMW 318is coupe 1895 103 |4 140 1182358 |0
BMW 320i coupe 1931 110 |6 150 | 1200000 @
BMW 323 coupe 29434 120 (6 163 |1285000 0
BMW 328i coupe 2793 142 6 193 | 1385000 |0
BMW M3 coupe 3201 236 6 321 | 2023000 0
BMW £3 coupe 2,3 2733 141 6 192 |1360000 0
BMW £3 M coupe 3201 236 o 321 | 2040000 @
JAGUAR. ¥KB coupe 3996 209 8 280 | 2600000 |1
MASERATI Ghibli Coupe 2,0 1996 (225 |6 306 |2035825 |4
MASERATI Ghibli Coupe 2,8 2730 209 6 284 |2053975 |4 il
« [r

93| Page

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

tmssoftware

TAdvStringGrid grouping

TAdvStringGrid has built-in single level automatic grouping and grouped sorting. This makes it easy
to add grouping features with a few lines of code. Grouping means that identical cells within the
same column are removed and shown as a grouping row for the other cells in the rows.

Example:
United States New York 205000
United States Chicago 121200
United States Detroit 250011
Germany Koln 420532
Germany Frankfurt 122557
Germany Berlin 63352

Grouped on the first column this becomes:

- United states

New York 205000
Chicago 121200
Detroit 250011
- Germany

Koln 420532
Frankfurt 122557
Berlin 63352

Grouped sorting on the first column becomes:

- United states

Chicago 121200
Detroit 250011
New York 205000
- Germany

Berlin 63352
Frankfurt 122557
Koln 420532

This is an overview of the grouping methods:

procedure Group(Collndex:integer);
procedure UnGroup;

property GroupColumn:integer;
procedure SubGroup(Colindex:integer);

The Group method groups based on the column Collndex. It automatically adds the expand /
contract nodes. When expand / contract nodes are available, the normal sort when a column header
is clicked changes to inter group sorting.

The Group method is equivalent to assighment of the GroupColumn property, ie :

AdvStringGrid.Group(5) has the same effect as AdvStringGrid.GroupColumn := 5;
Note that the column for grouping can only start from column 1, since column 0 is the placeholder

for the expand / contract nodes. The GroupColumn property has the additional benefit that it
returns -1 when grouping is not active. Otherwise it returns the current grouped column.

94| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

To undo the effect of grouping, the UnGroup method can be used, or as an alternative, the
GroupColumn property can be set to -1.

Example: loading a CSV file, applying grouping and performing a grouped sort

// loading CSV file in normal cells

AdvStringGridl.SaveFixedCells := False;
AdvStringGridl.LoadFromCSV ('cars.csv');

// automatically adapt column width to max. text width in columns
AdvStringGridl.AutoSizeColumns (False, 10) ;

// insert column as placeholder for nodes
AdvStringGridl.InsertCols (0,1);

// setting width of node column to fixed width of 20

AdvStringGridl.ColWidths[0] := 20;

// do grouping on column 1
AdvStringGridl.GroupColumn := 1;

// apply grouped sorting on (new) column 1
AdvStringGridl.SortSettings.Column := 1;

AdvStringGridl.QSortGroup;

When a grouped view is no longer necessary, it can be removed by:

AdvStringGrid.UnGroup;

Extra grouping features

TAdvStringGrid Demo =5
FRight click on a column header to group by column - Left click to sort column in group mode
Grouping : Car
Tupe | cc | Pk | Cylinder | K | Frice | Country | & Ungroup

3201 236 6 321 |2010000 |0

3201 236 6 3212040000 0 Epond
2793 141 1360000 Contract al

Chrysler

Stratus 2,5L% 1053000
Viper GTS 3399000
DE TOMASO

4537000

[

456 GT 12 8107000 |4
550 Maranello 5474|357 |12 485 |7502000 4
F355 Berlinetta 3500 280 |8 380 4779500 4
GTS 3500 280 |8 380 4900000 4
Spider 8 5021500 4

B JAGUAR

Some extra capabilities for more visually appealing grouping can be set through the property
grid.Grouping. Through this property it can be enabled that group headers are automatically set in a
different color and that cells from a group header are automatically merged. In addition, a group
can also have a summary line. A summary line is an extra row below items that belong to the same
group. This summary line can be used to put calculated group values in. The color for this summary
line can also be automatically set as well as cell merging performed on this.

95| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

Grouping property:

DEVELOPERS GUIDE

AutoSelectGroup: Boolean

When true, clicking on the group header automatically selects all
rows within the group (when goRowSelect = true)

GroupCountFormat: string

Specifies the display format for the group count in the group header

HeaderColor: TColor

When different from cINone, sets the background color for group
header rows

HeaderColorTo: TColor

When different from clNone, set the gradient end color for a merged
group header

HeaderLineColor: TColor

Sets the line color for the header underline

HeaderLineWidth: Integer

Sets the line width for the header underline

HeaderTextColor: TColor

When different from clNone, sets the font color for group header
rows

HeaderUnderline: Boolean

When true, an extra line under a header is displayed

MergeHeader: Boolean

When true, the group headers are automatically merged

MergeSummary: Boolean

When true, the group summary row is automatically merged

ShowGroupCount: Boolean

When true, the number of rows within each group is shown in the
group header. The property GroupCountFormat controls the display
format of the group count

Summary: Boolean

When true, a summary line is automatically added for each group

SummaryColor: TColor

When different from clNone, sets the background color for group
summary rows

SummaryColorTo: TColor

When different from clNone, set the gradient end color for a merged
group summary row

SummaryLine: Boolean;

When true, an extra line in a summary row is displayed

SummaryLineColor: TColor;

Sets the line color for the summary line

SummaryLineWidth: Integer;

Sets the line width for the summary line

SummaryTextColor: TColor

When different from clNone, sets the font color for group summary
rows

Group calculations

TadvStringGrid has built-in function to automatically calculate group sums, average, min, max,
count. The group results are set in the group header row if no summary row is shown, otherwise the
group summary row is used by default. Group calculations are performed per column.

9 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE

Available functions:

grid.GroupSum (AColumn: Integer);

Calculates column sums per group

grid.GroupAvg (AColumn: Integer);

Calculates column averages per group

Grid.GroupMin (AColumn: Integer);

Calculates column minimum per group

Grid.GroupMax (AColumn: Integer);

Calculates column minimum per group
Grid.GroupCount (AColumn: Integer);

Calculates number of rows in a group for each group

Grid.GroupCustomCalc (AColumn: Integer);

Allows to perform a custom calculation of group data with the event OnGroupCalc

If there is a need for a special group calculation that is not available in the standard group
calculation functions, the method grid.GroupCustomCalc can be used. For each group in the grid,
this will trigger the event grid.OnGroupCalc(Sender: TObject; ACol, FromRow,

ToRow: Integer; var Res: Double);
The meaning of the parameters is:

ACol : column to perform calculation for
FromRow: first row in the group

ToRow: last row in the group

Res: variable parameter to use to set the result

In this sample, the grid is initialized with random number, is grouped on column 1 and for the first
column in the grouped grid the standard deviation is calculated:

procedure TForml.AdvStringGridlGroupCalc (Sender: TObject; ACol, FromRow,
ToRow: Integer; war Res: Double);
var

i: integer;
d, m, sd: double;

begin
// calculate mean
m := 0;
for i := FromRow to ToRow do

97 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

begin

m := m + advstringgridl.Floats[ACol,i];
end;
m :=m / (ToRow - FromRow + 1);

// calculate standard deviation

sd := 0;
for i := FromRow to ToRow do
begin
sd := sd + sqgr(advstringgridl.Floats[ACol,i] - m);
end;
sd := sd / (ToRow - FromRow) ;
Res := sqgrt(sd);
end;

procedure TForml.FormCreate (Sender: TObject) ;
var
i: integer;

begin
AdvStringGridl.RowCount := 100;
AdvStringGridl.RandomFill (false, 100) ;
for i := 1 to AdvStringGridl.RowCount - 1 do

AdvStringGridl.Ints([1,i] := random(5);

AdvStringGridl.Grouping.Summary := true;
AdvStringGridl.Grouping.MergeHeader := true;
AdvStringGridl.Grouping.ShowGroupCount := true;
Advstringgridl.Group (1) ;
Advstringgridl.GroupCustomCalc (1) ;

end;

98 | Page

tmssoftware.com

This results in:

S0 {19}
14

24

26
32

37

39
41

G

63
72
74

77

g1
g3

g5

a3
L

99

27,36
|1 ¢z

e

Subgroups

50

g5
46
42
54

75
41

49
g1
31
6
g2
49
23

c7

50
1
24
74
26
99
30

54
14
g
14
31
13

19

b

e

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

With the SubGroup (and corresponding SubUnGroup) it is possible to create subgroups in a grouped
grid. Adding a subgroup to a grouped grid is done starting from the leftmost normal column.

9| Page

tmssoftware.com

R R R N - === =R =R =R =R ===
L = = R = R T i = =]

[N SR R =T T - T - T PO R i R R R R S A -
L T T e T e B O e R T e R = T O

1
i}
1
0
0
2
z
1
i}
i}
z
z
1
1
2
1
0

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

e =R R i T O R

ST VI =T N

S =T N]

(=T =T =] —-

(=T S]

In this example, a first group is created by calling grid.Group(1). Two additional subgroups are
added by calling grid.SubGroup(1) and grid.SubGroup(2);

The full code used to create this starting from a default grid is:

procedure TForml

begin
AdvStringGridl
AdvStringGridl
AdvStringGridl

AdvStringGridl

AdvStringGridl

AdvStringGridl
end;

.ButtonlClick (Sender:

.RowCount := 100;
.Randomfill (false, 3) ;
.Group (1) ;
AdvStringGridl. 1)
.SubGroup (2)
.ColWidths[1
.ColWidths[2

’

SubGroup (

] = 10;
]

TObject) ;

100 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid printing capabilities

TAdvStringGrid has built-in support to print its contents. Several methods exist to start printing the
grid or a selection of cells from the grid. In addition to the methods, the PrintSettings property
controls the various options for printing the grid.

y
Print Settings &J

General | Headers / Footers I Margins|

Borders:

Border: [Double -]
Border Style: [Solid V]
General:

[Repeat Fixed Columns AutoSize Columns
[Repeat Fixed Rows futnSize Rows
[Print graphics Center on Page

Fonts:

[A4 Table Font H A4 Fixed Font]

Use display font

[A4 Header Font] [AA Footer Font]

[Ok] [Cancel

PrinterSettings details

Borders The Borders property can be:

pbNoborder : no border is printed

pbSingle : single line width border is printed

pbDouble : double line width border is printed

pbVertical : only vertical single line borders are printed

pbHorizontal : only horizontal single line borders are printed

pbAround : only border around the grid is printed

pbAroundVertical : only outer vertical borders of the grid are printed
pbAroundHorizontal : only outer horizontal borders of the grid are printed

BorderStyle Line drawing style for border of type TPenStyle

Centered When true, printout is centered on the page.

ColumnSpacing Controls distance to skip between 2 columns in units of 1/10mm.
Date The position has the type TPrintPosition with following values

ppNone : no date is printed
ppToplLeft : data is printed in top left corner
ppTopRight : date is printed in top right corner

ppTopCenter : date is printed centered on top

101 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

ppBottomLeft : date is printed in bottom left corner
ppBottomCenter : date is printed centered at bottom

ppBottomRight : date is printed in bottom right corner

DateFormat Holds the date formatting parameter. Default value is dd/mm/yyyy.

FitToPage FitToPage controls what method is used for fitting grid data on a page:
fpNever : never use page fitting.
fpAlways : always fit to page, no matter what the scalefactor is
fpGrow : only fit to page by increasing font size / column widths
fpShrink : only fit to page by decreasing font size / column widths
fpCustom : call the OnFitToPage event, to query for allowing pagefit with
calculated scalefactor.

FixedFont Sets the font for fixed cells for printout

FixedHeight Height of rows for printout in 0.1mm. Overrules the auto calculated row
height if UseFixedHeight is true

FixedWidth Width of columns for printout in 0.1mm. Overrules the auto calculated
column width if UseFixedWidth is true

Font Sets font of printout

FooterFont Sets font for the footer

FooterSize Controls distance to skip at end of page in units of 1/10mm.

HeaderFont Sets font for the header

HeaderSize Controls distance to skip at start of page in units of 1/10mm.

JobName Sets title for print job in printer spooler

LeftSize Controls distance to skip at left side of page in units of 1/10mm.

MaxPagesOffset Sets the offset of the total nr. of pages printed.

NoAutoSize If true, disables the automatic column sizing to optimize paper use and

retain full column text visibility but uses column sizes proportional to
column sizes on display and prints using wordwrapping if wordwrap
property is true

NoAutoSizeRow

When true, no automatic row height calculation is performed and the row
height of the printed grid is proportional to the on screen row height.

Orientation Sets printer orientation to landscape or portrait (defined in the Printers
unit)
PageNr The position has the type TPrintPosition with following values

ppNone : no page number is printed
ppToplLeft : page number is printed in top left corner
ppTopRight : page number is printed in top right corner

102 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

ppTopCenter : page number is printed centered on top
ppBottomLeft : page number is printed in bottom left corner
ppBottomCenter : page number is printed centered at bottom
ppBottomRight : page number is printed in bottom right corner

PageNumberOffset Sets the offset of the page numbers printed.

PageNumSep Sets the separator between actual printed page and total nr. of pages. If
PageNumSep is a zero length string, total number of pages is not printed.
Default value is '/’

PagePrefix Sets the prefix for page numbering for printout

PageSuffix Sets the suffix for page numbering for printout

PrintGraphics

When true, graphics are printed

RepeatFixedCols

When true, printout of fixed columns is repeated on each page.

RepeatFixedRows

When true, printout of fixed rows is repeated on each page.

RightSize

Controls distance to skip at right side of page in units of 1/10mm.

RowSpacing

Controls distance to skip between 2 columns in units of 1/10mm.

Time

Sets the position where time of printout needs to be printed. The position
is of the type TPrintPosition and can be:

ppNone : no time is printed

ppToplLeft : time is printed in top left corner
ppTopRight : time is printed in top right corner
ppTopCenter : time is printed centered on top
ppBottomLeft : time is printed in bottom left corner
ppBottomCenter : time is printed centered at bottom

ppBottomRight : time is printed in bottom right corner

Title

Defines where the title is printed. This is of the type TPrintPosition with
equal settings as for Time

TitleLines

TitleLines is a stringlist that can be used instead of TitleText to hold a
multiple title lines

TitleSpacing

Controls the space between the grid title and the actual grid data in 0.1mm
units

TitleText TitleText holds a single line title only. When using multiline titles, use the
TitleLines property
UseFixedHeight If true, uses value FixedHeight, else auto calculation is done

103 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

UseFixedWidth If true, uses value FixedWidth, else auto calculation is done

UseDisplayFont When true, the PrintSettings.Font and PrintSettings.FixedFont properties
are ignored and the grid’s display fonts are used for printing

UseDefaultOrientation | When true, the default printer orientation is used as opposed to forcing the
orientation to the PrintSettings.Orientation setting.

Print methods

The methods available for printing are listed here. Two categories exist: the methods that print to
the currently selected default printer and equivalent methods that just draw on the selected
canvas. Printing can be done for: full grid, programmatically choosen rectangle of cells, selected
cells, disjunct selected rows or disjunct selected columns.

procedure Print;
procedure PrintRect (Gridrect:TGridRect) ;
procedure PrintSelection;

procedure PrintSelectedRows;

procedure PrintSelectedCols;
procedure PrintPreview (Canvas:TCanvas;Displayrect:TRect);

procedure PrintPreviewRect (Canvas:TCanvas; Displayrect:TRect;
Gridrect:TGridRect) ;

procedure PrintPreviewSelection (Canvas:TCanvas; Displayrect:TRect);

procedure PrintPreviewSelectedRows (Canvas:TCanvas; Displayrect:TRect);

procedure PrintPreviewSelectedCols (Canvas:TCanvas; Displayrect:TRect);

Print related events

OnPrintPage Event triggered at start of each page
OnPrintPageDone Event triggered after printing of a page completes
OnPrintStart Event triggered before starting printing pages. This event returns the

number of pages that will be required for the print and through
parameters FromPage, ToPage it is possible to select a subset of pages
to be printed

OnPrintCancel Event triggered after printing each page with parameter Cancel that can
be set true to cancel further printing

OnFitToPage Event triggered after fit to page calculations have been done. This

104 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

allows to override the calculated scale factor

OnPrintNewPage

Event triggered after each row is printed allowing to force a page break
on an arbitrary row in the grid

OnPrintSetColumnWidth | Event triggered after calculation of required column widths, allowing to

override the calculated column width

OnPrintSetRowHeight

Event triggered after calculation of required row heights, allowing to
override the calculated row height

Using the helper dialog components TAdvPreviewDialog and TAdvGridPrintSettingsDialog

Using these dialogs is straightforward. Both dialogs have a property Grid. Put the component on the
same form as the grid’s form and assign the grid to the AdvPreviewDialog.Grid or
AdvGridPrintSettingsDialog.Grid property.

For the printsettings dialog following configurations are possible:

Caption Sets the caption text of the printsettings dialog
INIFile Sets the filename where to load/store printsettings
Options Selects which parts of the print settings are enabled for changing. By default

all settings are enabled for changing

PrintDimensions

Selects which dimensions are used in the settings dialog. This can be inches
or millimetres

PrintPreview

When true, a small preview rectangle is displayed in the print settings dialog

For the print preview dialog following configurations are possible:

CloseAfterPrint

When true, if the Print button is pressed on the preview dialog to start a
print, the dialog is automatically closed after printing has finished

DialogCaption

Sets the caption text of the preview dialog

DialogCloseBtn

Sets the close button text

DialogNextBtn

Sets the text of the next page button

DialogPrevBtn

Sets the text of the previous page button

DialogPrintBtn

Sets the text of the print button

PreviewCenter

Positions the preview dialog always in the screencenter

105| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

PreviewFast

Shows a preview without doing page number calculation resulting in a faster
display

PreviewHeight
PreviewWidth
PreviewlLeft
PreviewTop

Sets the dimensions and position of the preview dialog

PrinterSetupDialog

When true, choosing Print from the preview dialog will first show the printer
setup dialog before starting the print

PrintSelectedCols

Shows only selected columns in the preview. Mutually exclusive with
PrintSelectedRows and PrintSelection

PrintSelectedRows

Shows only selected rows in the preview. Mutually exclusive with
PrintSelectedCols and PrintSelection

PrintSelection

Shows only selected cells in the preview. Mutually exclusive with
PrintSelectedRows and PrintSelectedCols

ShowMaximized

When true, the preview dialog is started in maximized state

Public print related properties

A series of additional public read-only properties are available that return information during the

printing process:

PrintPageRect:TRect;

Returns the physical dimensions (in logical coordinates) of
the currently printed page

PrintPageWidth: Integer; Returns the page width in logical coordinates

PrintColWidth[ACol: Integer]: Integer; | Returns the width of the column on paper in logical

coordinates

PrintColOffset[ACol: Integer]: Integer; | Returns the indent from left of the column on paper in

logical coordinates

PrintColStart: Integer;

Position from left in logical coordinates of the first column
left border

PrintColEnd: Integer;

Position from right in logical coordinates of the last
column right border

PrintNrOfPages: Integer; Returns number of pages required

Example: printing a company logo in the page header

The OnPrintPage event is used to print a custom header on each page. This event is triggered for
each page and thus allows to add any custom information on the printout. In this example, the

space allocated for the

custom header is set through the PrintSettings.HeaderSize property. It is

106 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

important to know that printing is happening in MM_LOMETRIC mode, meaning a positive X-axis used
but a negative Y-axis.

procedure TForml.AdvStringGridlPrintPage (Sender: TObject; Canvas: TCanvas;
pagenr, pagexsize, pageysize: Integer);

var
bmp: TBitmap;
r: TRect;

ratio: double;

begin
bmp := TBitmap.Create;
bmp.LoadFromFile ('athena.bmp') ;

ratio := bmp.Width/bmp.Height;

r.Left := AdvStringGridl.PrintColOffset[1];

r.Top := -0;

r.Right := r.Left + Round(AdvStringGridl.PrintSettings.Headersize*ratio);
r.Bottom := r.Top - AdvStringGridl.PrintSettings.Headersize;

Canvas.StretchDraw (r, bmp) ;

bmp.Free;

r.Left := r.Right;

r.Top := 0;

Canvas.TextOut (r.Left,r.Top, 'Printed with TAdvStringGrid');
r.Top := r.Top - Canvas.TextHeight ('gh');

Canvas.TextOut (r.left,r.top, 'showing how to add a bitmap in the header');

r.Left := AdvStringGridl.PrintColOffset[1];
r.Right := AdvStringgridl.PrintColOffset[8];
r.Top := -AdvStringgridl.PrintSettings.HeaderSize+2;

Canvas.MoveTo (r.left,r.top);
Canvas.LineTo (r.right, r.top);
end;

107 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid clipboard handling

Handling standard keyboard shortcuts for clipboard is enabled by setting the property
grid.Navigation.AllowClipboardShortCuts to True. Note that by default clipboard cut and paste
operations only apply on editable cells. This can be overridden by setting the property
Grid.Navigation.AllowClipboardAlways to true. When clipboard actions are performed by keyboard
shortcuts in the grid, the following events are triggered:

OnClipboardPaste
OnClipboardBeforePasteCell
OnClipboardBeforePasteWideCell
OnClipboardCopy
OnClipboardCut

These events have a parameter Allow, through which the clipboard operation can be cancelled by
setting it to false. These clipboard events are called one time before the clipboard action happens
and thus affect multiple cells in case multiple cells are involved in the clipboard operation.

In addition, the event OnClipboardBeforePasteCell is triggered before each cell value is replaced by
its new value, allowing programmatic control whether the pasted values can be accepted or
automatic replacement of pasted values. The OnClipboardBeforePasteWideCell is the equivalent
event in case a Unicode text value is pasted in a cell.

Finally, following clipboard methods are available to do programmatic clipboard operations:

procedure CutToClipboard;

procedure CutSelectionToClipboard;
procedure CopyToClipBoard;

procedure CopyToClipBoardAsHTML;
procedure CopySelectionToClipboard;
procedure PasteFromClipboard;
procedure PasteSelectionFromClipboard;

TAdvStringgrid supports following clipboard formats:
1) Standard text format (Unicode text for Delphi 2009, ANSI text for older versions)

This mode performs a copy & paste of just unformatted text. This mode is compatible with tables in
many other applications such as Microsoft Excel, Microsoft Word or any text editor.

2) Rich text format
This mode performs a copy & paste of cell text including cells with rich text formatting
3) Binary format (proprietary format)

This mode performs a copy & paste of cells including cell properties such as color, alignhment, font,
... This clipboard format can only be pasted within TAdvStringGrid.

By default, standard text format is enabled. To allow rich text clipboard format, set
grid.Navigation.AllowRTFClipboard to true. To allow also formatted text copy & paste, set
grid.Navigation.AllowFmtClipboard to true.

108 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

A paste operation will by default always overwrite the cells starting from the top/left cell of the
selection in the grid. A paste operation can also insert cells instead. This mode is selected with
grid.Navigation.ClipboardPasteAction.

In this sample code snippet, pasting in the grid will automatically insert new cells. By implementing
the OnClipboardBeforePasteCell, it is ensured in code that no cell text will be longer than 4
characters when pasting text:

procedure TForml.AdvStringGridlClipboardBeforePasteCell (Sender: TObject;
ACol, ARow: Integer; var Value: string; var Allow: Boolean);

begin
if length (Value) > 4 then
Value := copy(Value,1,4);
end;

procedure TForml.FormCreate (Sender: TObject);

begin
AdvStringGridl.Navigation.AllowClipboardShortCuts := true;
AdvStringGridl.Navigation.ClipboardPasteAction := palnsert;
end;

109 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid floating footer use

With the floating footer (for which the settings are organised in the property grid.FloatingFooter) an
always visible fixed footer can be displayed in the grid. This footer is always visible independent of
vertical scrolling in the grid. The floating footer can currently be organised in 3 different ways set
by the FooterStyle property:

fsFixedLastRow
fsColumnPreview
fsCustomPreview

With the fsFixedLastRow style, the last row is always displayed in the fixed floating footer instead
of in regular grid cells. With the fsFixedLastRow style, all columns are displayed in the fixed footer
in the same way these would be displayed normally in the last row. This means that all settings that
affect display of row with index RowCount - 1 (= last row) apply to the display of the fixed floating
footer.

In fsColumnPreview mode, the fixed floating footer displays the column set by
grid.FloatingFooter.Column: Integer for the current focused row. This can be used as a convenient
way to display cell contents that would not fit in a small column, in the full grid width of the fixed
floating footer for the selected row.

Finally, the fsCustomPreview mode enables combined column previewing through the
CustomTemplate. With the custom template, different column contents can be shown by a
referencing HTML tag. Suppose column 1 contains the name of a person, column 2 the prename and

column 3 the address. This can be combined in a convenient preview of full name and address
through a CustomTemplate like :

'Person : <#1> <#2> Address : <i><#3>";
Example: using fsFixedLastRow style to display always visible last row of the grid

The fsFixedLastRow style is choosen in the FloatingFooter settings and the last row is used to display
the column sums. The following method puts the column sums into the last row :

procedure TForml.UpdateSums;

var
i: Integer;

begin
for i := 1 to AdvStringGridl.ColCount - 1 do

AdvStringGridl.Floats[i,AdvStringGridl.RowCount - 1] :=
AdvStringGridl.ColumnSum (i, 1,AdvStringGridl.RowCount - 2);
AdvStringGridl.FloatingFooter.Invalidate;
end;

To synchronise updating the floating footer whenever a cell value changes through editing, the
UpdateSums method is called from the OnCellValidate event which is triggered whenever editing
changes a cell.

procedure TForml.AdvStringGridlCellValidate (Sender: TObject; Col,
Row: Integer; var Value: String; wvar Valid: Boolean);
begin
UpdateSums;
end;

1M0 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

While the above example shows how displaying custom calculated values in the floating footer can
be achieved, TAdvStringGrid already provides some predefined column calculation methods. The
predefined column calculations can be set with:

Grid.FloatingFooter.ColumnCalc[ColumnIndex: Integer]: TColumnCalcType;
Where TColumnCalcType is:

TColumnCalcType = (acNONE,acSUM,acAVG,acCOUNT,acMIN,acMAX,acCUSTOM);

acAvVG Auto calculated column average

acCOUNT Auto calculated column row count

acCUSTOM Whenever a floating footer value needs to
be updated, the event OnFooterCalc is

triggered
acMAX Auto calculated column maximum value
acMIN Auto calculated column minimum value
acNONE No automatic calculation done
acSUM Auto calculated column sum

Default type is acNone, thus by default the value in the floating footer in fsFixedLastRow style is
the contents of the last row cell.

Example: setting up column 2 with auto calculated sum and colum 4 with auto calculated average

Grid.FloatingFooter.ColumnCalc[2] acsSum;

Grid.FloatingFooter.ColumnCalc[4] := acAverage;
Example: using custom footer calculation to calculate standard deviation

This code initializes a default grid with a visible floating footer and calculation acCUSTOM for the
first editable column. The OnFooterCalc event calculates the standard deviation while the sum is
automatically calculated for the 2" editable column:

procedure TForml.FormCreate (Sender: TObject) ;
begin
with AdvStringGridl do
begin
ColCount := 20;
RandomFill (false, 100) ;
Options := Options + [goEditing];
FloatingFooter.Visible := true;
FloatingFooter.ColumnCalc[1l] := acCUSTOM;
FloatingFooter.ColumnCalc[2] := acSUM;
end;
end;

1M1 | Page

tmssoftware.com

procedure TForml.AdvStringGridlFooterCalc (Sender: TObject;

Integer; var Value: string);

var
i: integer;
d, m, sd: double;

begin
// calculate mean

H
[o}
H
e
Il

advstringgridl.FixedRows to ARow do

m := m + advstringgridl.Floats[ACol,1i];

m :=m / (ARow - advstringgridl.FixedRows + 1);

// calculate standard deviation

sd := 0;

for 1 := advstringgridl.FixedRows to ARow do

begin

sd := sd + sqgr(advstringgridl.Floats[ACol,i] - m);

end;

sd := sd / (ARow - advstringgridl.FixedRows) ;

Value := Format (advstringgridl.FloatFormat, [sgqrt(sd)])
end;

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

ACol, ARow:

12 | Page

tmssoftware

TAdvStringGrid search pane

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid has a built-in Firefox style search pane. The settings for this Search pane can be
found under SearchFooter. This has properties for setting colors, button texts and hints. When the
Search pane is set visible with setting SearchFooter.Visible = true, text to search for can be typed

in the edit control and when a matching cell is found, the grid will automatically move the focus to
the first matching cell. From there, other matching cells can be found with the Forward/Backward

buttons.
| | | | A
Audi Ad 2,4 2393 120] 163 1065000
Audi A4 2,8 2771 142] 193 1313500
Audi A41,9TDI 15896 66 4 =l o000
Audi TT Caupe 1761 132 4 1580 1235000
Audi A6 1,5 17581 9z 4 125 1093000
Audi AG 2,4 2393 120 & 163 1279000
Audi MG 2,6 2771 142] 193 1504000
Audi AG1,9TDD | 1596 gl 4 110 1113000
Audi AG2,5TDD | 2496 110] 150 1310000
Audi A5 2,58 2771 142 & 195 1541500
Audi AG 3,7 3697 169 g 230 2105000
Audi AS 4,2 4172 221 g 300 Z786a500
Audi A5 2,5TD0 2496 110 & 150 1555000
Bl 316is coupe | 1695 103 4 140 1152358
B F20icoupe | 1991 110] 150 1200000
[| @ Backward E4 Highlight []Hocfdletters =
< >

SearchFooter options:

AutoSearch: boolean

When true, search starts while typing in the search edit
control

Color: TColor

Sets the search panel background start gradient

ColorTo: TColor

Sets the search panel background end gradient

FindNextCaption: string

Sets the text for the forward search button

FindPrevCaption: string

Sets the text for the backward search button

Font: TFont

Sets the search panel font

HighlightCaption: string

Sets the text for the highlight button

HintClose: string

Sets the hint text for the close button

HintFindNext: string

Sets the hint text for the forward search button

HintFindPrev: string

Sets the hint text for the backward search button

HintHighlight: string

Sets the hint text for the highlight

MatchCaseCaption: string

Sets the text of the checkbox caption that selects case
sensitivity

13| Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

SearchActiveColumnOnly: boolean When true, search is limited to the column that has the
focused cell

SearchColumn: integer Sets the column index where search should happen. When
SearchColumn is -1, all columns are searched

SearchFixedCells: boolean When true, a search is also performed in fixed cells of the
grid.

SearchMatchStart: boolean When true, match must start from beginning of a word

ShowClose: boolean When true, the close button is shown

ShowFindNext: boolean When true, the forward search button is shown

ShowFindPrev: boolean When true, the backward search button is shown

ShowHighlight: boolean When true, the highlight button is shown

ShowMatchCase: boolean When true, the case sensitive selection checkbox is shown

Visible: boolean Sets the SearchFooter visible or hidden

The grid exposes following search footer events:
OnSearchEditChange: event is triggered when text changes in the search footer edit control

OnSearchFooterAction: event is triggered during the search, action indicates saFindFirst,
saFindPrevious, saFindNext

OnSearchFooterClose: event is triggered when the search footer is closed by clicking the close
button

OnCreatedSearchFooter: event is triggered after the search footer was internally created.

The search footer in the grid can also be directly accessed, for example to preset the search edit
control text or to directly change properties of the controls in the search footer. This can be done
using:

grid.SearchPanel.EditControl: TEdit; exposes the search edit control
grid.SearchPanel.MatchCase: TCheckBox; exposes the case sensitivity checkbox
grid.SearchPanel.HiliteButton: TAdvGridButton; exposes the highlight button
grid.SearchPanel.ForwardButton: TAdvGridButton; exposes the forward search button
grid.SearchPanel.BackwardButton: TAdvGridButton; exposes the backward search button
grid.SearchPanel.ExitButton: TAdvGridButton; exposes the search footer close button

In following sample code snippet, the search footer is programmatically made visible, the search
edit control is preset with a value and focus is set on this edit control:

AdvStringGridl.SearchFooter.Visible := true;
AdvStringGridl.SearchPanel .EditControl.Text := 'Preset';
AdvStringGridl.SearchPanel.EditControl.SetFocus;
AdvStringGridl.SearchPanel .EditControl.SelStart := 0;

1M4 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

AdvStringGridl.SearchPanel.EditControl.SellLength :=
Length (AdvStringGridl.SearchPanel.EditControl.Text) ;

15| Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid cell merging

TAdvStringGrid supports cell merging. This means that multiple cells can be merged and appear as if
they are only one cell in the grid. The contents and properties of a merged cells are always
controlled by the top left cell, ie. to set the text and properties such as cell color, cell font, set the
text via grid.Cells[leftcell,topcell] or grid.Colors[leftcell, topcell]. An important note is that in the
current version hidden cells cannot be combined with merged cells. If hidden cells are required,
allocate these outside the merged cell area in the rightmost cells.

Example: a grid with a merged cell

& TAGVStringGrid varia [ESHIEN X
+ This is Tahoma ‘ | s
[This is bold =

|

| Fized col
| merged
Here we have the link

Wordwrapped textin a
merged cell displayed
here

il

This is a fixed merged cell across the grid

Following methods are available to handle cell merging:

function IsBaseCell (ACol,ARow: Integer): Boolean;

Returns true if the cell is the topleft cell of a merged cell. For a cell that is not merged, IsBaseCell
always returns true.

function IsMergedCell (ACol,ARow: Integer): Boolean;,
Returns true if the cell is part of a merged cell

function IsXMergedCell (ACol,ARow: Integer): Boolean;

Returns true if the cell is part of a horizontally merged cell
function IsYMergedCell (ACol,ARow: Integer): Boolean;
Returns true if the cell is part of a vertically merged cell

function BaseCell (ACol,ARow: Integer): TPoint;,
Returns the cell coordinates of the topleft cell of a merged cell
function FullCell (c,r: Integer): TRect;,

Returns the rectangle a merged cell is using

function CellSpan (ACol,ARow: Integer): TPoint;

Returns the number of horizontal and vertical cells a merged cell is using

procedure MergeCells (c,r,spanx,spany: Integer);

116 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Merges cell c,r with spanx number of horizontal cells and spany of vertical cells
procedure SplitCells(c,r: Integer);

Splits cells again merged with cell c,r

procedure MergeColumnCells (ColIndex: Integer,; MainMerge: Boolean);

Automatically merges all cells with identical cell contents in the column Colindex. If MainMerge is
false, cells are not merged if cells on left of the Colindex column are not merged.

procedure SplitColumnCells (ColIndex: Integer);
Splits all cells in column Collindex
procedure MergeRowCells (RowIndex: Integer; MainMerge: Boolean) ;

Automatically merges all cells with identical cell contents in the row Rowlndex. If MainMerge is
false, cells are not merged if cells on top of the RowIndex row are not merged.

procedure SplitRowCells (RowIndex: Integer);

Splits all cells in row RowlIndex

procedure SplitAllCells;
Splits all cells in the grid

Example: cell merging and setting properties for merged cells
To set a long text in 10 horizontally merged cells you can :

AdvStringGridl .MergeCells (1,6,10,1);
AdvStringGridl.Cells[1,6] := 'This another one that is long too';

The background color of this merged cell can be set by changing the background color of the base
cell, ie :

AdvStringGrid.Colors[1l,6] := clLime;

To reapply the default color, use :

AdvStringGrid.Colors|[1,6] clNone;

If you want to use the OnGetCellColor event to set colors, it is sufficient to handle the base cell
color setting, for example in this way :

procedure AdvStringGridlGetCellColor (Sender: TObject; ACol,ARow: Integer;
AState: TGridDrawState; ABrush: TBrush; AFont: TFont);

begin
if ACol = 1 then
begin
AFont.Color := clBlue
AFont.Style := [fsBold];
end;
end;

17 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid OLE drag & drop

Extensive support for automatic drag & drop is included in TAdvStringGrid. Because drag & drop
conforms to OLE based drag & drop, this makes drag & drop possible not only within your
application but also between applications that conform to this standard such as Excel, Word or even
other applications with TAdvStringGrid.

Making use of these capabilities is done through several properties and events :

Properties under grid.DragDropSettings:

OleAcceptFiles: when true, files can be dropped on the grid

OleAcceptText: when true, text from an OLE drag & drop source (such as Microsoft Word, Microsoft
Excel) can be dropped on the grid.

OleAcceptURLs: when true, a hyperlink from an OLE drag & drop source can be dropped on the grid
OleColumnDragDrop: when true, the grid can drag & drop entire columns by dragging from the
column header.

OleCopyAlways: when true, drag & drop always performs a copy as otherwise a Ctrl-drag performs a
copy and a simple drag performs a move.

OleDropRTF: when true, the grid can accept richt text formatted text

OleDropSource: make the grid act as a source for drag & drop

OleDropTarget : make the grid act as a target for drag & drop

OleEntireRows : make sure that entire row (including fixed row) is handled during drag & drop in
RowSelect mode

OlelnsertRows : perform automatic row insertion when rows are dropped on the grid
OleRemoveRows : perform automatic row removal if drag & drop move operation is done, otherwise
the move will result in empty rows

ShowCells: when true, a semi transparent image of cells dragged is shown during drag & drop.

Screenshot of drag & drop with image showing cells being dragged. The little green arrow indicates
in what cell the drop will occur.

0 3 35 20

27 a7 31 16

37 42 i 47

7 a4 3 29

91 35 I 32

a9 34 71 30

" - s 42 e

- - us 34 i

a7 28 77 36 77
34 71
32 45

Some other properties that are relevant for drag & drop are :

In Navigation:

Navigation.AllowClipboardAlways : will allow drop on a grid where editing is disabled. Otherwise,
only editable cells could change through the drop operation.

Navigation.AllowClipboardRowGrow : will allow automatic adding of rows if more rows are dropped
on the grid than present

118 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Navigation.AllowClipboardColGrow : will allow automatic adding of columns if more columns are
dropped on the grid than present

Public property:
ExcelClipboardFormat:boolean : use clipboard format compatible with Excel

Events:

OnOleDrag : event triggered when drag starts. Through the Allow parameter, the drag can be
enabled or not.

OnOleDragOver : event triggered during the drag operation when the mouse is over the grid.
Through the Allow parameter, the place where data can be dropped can be set.

OnOleDragStart : event triggered when drag has started.

OnOleDragStop : event triggered when drag has stopped. Indicates whether it was a move, copy or
cancelled drag & drop operation.

OnOleDrop : event triggered when succesfull drop of cells was performed on the grid.
OnOleDropCol : event triggered when succesfull drop of a column was performed on the grid.

Row drag & drop

Enabling row drag and drop is simple. OleDropSource and OleDropTarget properties are set true. In
addition OleEntireRows, OleRemoveRows and OlelnsertRows are set true to enable full row drag &
drop. The only event used further is OnOleDrag where Allow is set true whenever the origin row of
the drag operation is not a fixed row. This is necessary, as drag & drop from a fixed row starts a
column drag & drop. Notice that drag & drop between grids as well as in the grid itself (to allow row
rearranging is possible)

To allow only drag & drop between grids, use the OnOleDragStart event to set the source grid in a
variable. In the OnOleDragOver event, set Allow to false if the Sender is equal to this source. Finally
reset the source on the OnOleDragStop event.

Example: row drag & drop

ddsource: TObject;

procedure Forml.OnOleDragStart (Sender:TObject; Arow,Acol: integer);
begin

ddsource := Sender;
end;

procedure Forml.OnOleDragOver (Sender:TObject; Arow,Acol: integer;
var Allow: boolean);

begin
Allow := ddsource <> Sender;

end;

procedure Forml.OnOleDragStop (Sender:TObject; Arow,Acol: integer; var
Allow: boolean);
begin
ddsource := nil;
end;

Cell drag & drop

Everything under row drag & drop applies to cell drag & drop, except that OleEntireRows,
OleRemoveRows and OlelnsertRows are set false here.

Column drag & drop

119 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Column drag & drop is a little more involved. This is because the interface allows for more than just
inter grid column drag & drop but allows the implementation for something like a field chooser (see
example project 29) as well.

Where the previous examples disabled column drag & drop by setting Allow=false when the drag
started from the fixed row, this example only enables drag & drop when the drag starts from the
fixed row. (Nothing prevents enabling both in the same grid though)

The OnOleDragOver event is used to allow a drop of a column only when the mouse cursor is over a
fixed row. Except when the grid has no columns, a drop on the fixed column is not allowed:

procedure TForml.OnOleDragOver (Sender: TObject; Arow, Acol: integer; var
Allow: boolean);

begin
with Sender as TAdvStringGrid do
Allow := (Sender<>ColSource) and (Arow=0) and ((Acol>0) or
(ColCount=1)) ;
end;

The event OnOleDropCol is triggered when a column is dropped. It indicates the index of the
original column dropped as well as the index of the column where it is dropped. It is in this event
that the column data of the source grid is inserted in the target grid:

procedure TForml.AdvStringGrid50leDropCol (Sender: TObject; Arow, Acol,
DropCol: Integer);
var
sl: TStringList;
begin
coltarget := Sender as TAdvStringGrid;
sl := TStringList.Create;
sl.Assign(colsource.Cols[DropCol]) ;

if (acol = 0) then inc(acol);

coltarget.insertcols (acol, 1) ;
coltarget.Cols[acol] .Assign(sl);
sl.Free;

end;

Finally the OnOleDragStop event is used to remove the column from the source grid if the drag &
drop was a move operation:

procedure TForml.AdvStringGrid50leDragStop (Sender: TObject;
OLEEffect: Integer);

begin
if OLEEffect = DROPEFFECT MOVE then
begin
colsource.RemoveCols (colsourceidx, 1) ;
end;
end;

120 Page

http://www.tmssoftware.com/asg29.htm

TMS SOFTWARE
tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid hidden columns and rows

It can be convenient to put data in cells that are not visible for the user but accessible by the
application. TAdvStringGrid therefore supports hidden columns or hidden rows. Great care must be
taken into account when using both at the same time. The recommended way is to first apply all
row hiding and then apply column hiding and unhide the columns again before unhiding the rows.

Methods available for handling columns hiding are:
procedure HideColumn(Colindex: Integer);

procedure UnHideColumn(Collndex: Integer);
procedure HideColumns(FromCol,ToCol: Integer);
procedure UnHideColumns(FromCol,ToCol: Integer);
procedure UnHideColumnsAll;

function IsHiddenColumn(Colindex: Integer): Boolean;

function NumHiddenColumns: Integer;

Methods available for handling row hiding are:
procedure HideRow(Rowindex: Integer);

procedure HideRows(FromRow,ToRow: Integer);

procedure HideRowList(RowList: TIntList);
procedure UnHideRow(Rowindex: Integer);
procedure UnHideRows(FromRow,ToRow: Integer);

procedure UnHideRowsAll;

procedure UnHideRowsList;

procedure HideSelectedRows;

procedure HideUnSelectedRows;

function IsHiddenRow(Rowindex: Integer): Boolean;
function NumHiddenRows: Integer;

The use of these methods is straightforward as the name of the method implies with the exception
of HideRowList & UnHideRowList. With HideRowList, it is possible to hide multiple consecutive or
non consecutive rows with one call. This will be much faster than calling HideRow multiple times.
To use HideRowList, build a TIntList with the indexes of rows to hide (TIntList is defined in the
AdvODbj unit). Make sure to call UnHideRowList after calling HideRowList.

Example: hiding multiple non consecutive rows with HideRowList

121 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

var
il: TIntList;

begin

il := TIntList.Create(-1,-1);
il.Add (5) ;
il.Add (6) ;
il1.Add(7);
il.Add (15);
il.Add (16);

1i1.Add (17);

AdvStringGrid.HideRowList (il); // hides rows 5,6,7,15,16,17
end;

’

When cells are hidden, it is still possible to access these hidden cells. Two cell addressing schemes
are available: one with visible column and row indexes and one with real column and row indexes.
With real column or row indexes, cells can be accessed as if these were not hidden. With visible
column or row indexes cells are accessed with the index as appearing on the screen.

The property grid.Cells[Col,Row]: string is using the visible column and row indexes while the
property grid.AllCells[Col,Row]: string provides access to cells with real coordinates.

Example: mixing visible and real column index access

// initializing the grid

Grid.Cells[1,1] := ‘Col 1';

Grid.Cells[2,1] := ‘Col 27’;

Grid.Cells[3,1] := ‘Col 3’;

// hiding column 2

Grid.HideColumn (2) ;
1]

Grid.AllCells([2, := ‘A’; // updates cell “Col 27;
Grid.UnHideColumn (2) ;

The result is : “Col 17, “A”, “Col 3”

TAdvStringGrid also provides a set of functions to allow performing the mapping of real cell indexes
to visible cells indexes and vice versa. This is provided through:

function RealRowlIndex(ARow: Integer): Integer;

function RealCollndex(ACol: Integer): Integer;

Returns the real column or row index for a given visible column or row index
function DisplRowIndex(ARow: Integer): Integer;

function DisplColindex(ACol: Integer): Integer;

Returns the visible column or row index for a given real column or row index

In the example above, changing the code in:

122 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

// initializing the grid
Grid.Cells[1,1] ‘Col 17;
Grid.Cells[2,1] := ‘Col 2’;
Grid.Cells[3,1] := ‘Col 37;
// hiding column 2
Grid.HideColumn (2) ;
Grid.AllCells([2,1] := IntToStr (Grid.DisplColIndex(3)):;
Grid.UnHideColumn (2) ;

Results in : “Col 17, “2”, “Col 3”
as the visible column index of the real column index 3 is now 2.

The same logic applies to hidden rows.

123 | Page

TMS SOFTWARE
tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid cell formatting

Two types of cell formatting are available. The first method is format at the time of adding
information to a cell, the second method is by applying a format when a cell is being displayed.

The first method is the most simple. The format is set with the property grid.FloatFormat and is
string specifier that is also used for the Borland Format() function.

Example:
grid.FloatFormat := '%.3m’;

selects a money type floating point format with currency symbol, thousand separator and three
decimals. When assigning a float to the grid with:

var
d: double;
begin
d := 1234567,8912;
advstringgridl.Floats[1,1] := d;
end;

this will be displayed in the grid as:

1,234,567.891 $

When the FloatFormat property is changed, a new float format will be applied for all new
assignments to grid.Floats[col,row]

Dynamic float formatting

Dynamic float formatting is done through the event OnGetFloatFormat. This example event handler
specifies that the first 3 columns have float data and sets a different format for the three columns.

procedure TForml.AdvStringGridlGetFloatFormat (Sender: TObject; ACol,
ARow: Integer; var IsFloat: Boolean; wvar FloatFormat: String);
begin
IsFloat := ACol in [1,2,31;

case ACol of
1: FloatFormat :=
2: FloatFormat :=
3: FloatFormat :=
end;

end;

o\°

o oo
Q. -

-N O
~ 3

An important difference between static & dynamic float formatting is that for static formatting, the
precision of the cell data is determined by the FloatFormat property at the time of assigning the
grid.Floats[col,row] property. For dynamic float formatting, the float can be set with full precision
in the grid and only for display purposes have a lower precision.

For completeness, the full capabilities of a float format specifier can be found here:

124 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Format specifiers have the following form:

"%" [index ":"] ["-"] [width] ["." prec] type

A format specifier begins with a % character. After the % come the following, in this order:

An optional argument zero-offset index specifier (that is, the first item has index 0), [index ":"]

An optional left justification indicator, ["-"]
An optional width specifier, [width]
An optional precision specifier, ["." prec]

The conversion type character, type

The following table summarizes the possible values for type:

d

Decimal. The argument must be an integer value. The value is converted to a string of
decimal digits. If the format string contains a precision specifier, it indicates that the
resulting string must contain at least the specified number of digits; if the value has
less digits, the resulting string is left-padded with zeros.

Unsigned decimal. Similar to 'd’ but no sign is output.

Scientific. The argument must be a floating-point value. The value is converted to a
string of the form "-d.ddd...E+ddd". The resulting string starts with a minus sign if the
number is negative. One digit always precedes the decimal point.The total number of
digits in the resulting string (including the one before the decimal point) is given by the
precision specifier in the format string—a default precision of 15 is assumed if no
precision specifier is present. The "E" exponent character in the resulting string is
always followed by a plus or minus sign and at least three digits.

Fixed. The argument must be a floating-point value. The value is converted to a string
of the form "-ddd.ddd...". The resulting string starts with a minus sign if the number is
negative.The number of digits after the decimal point is given by the precision specifier
in the format string—a default of 2 decimal digits is assumed if no precision specifier is
present.

General. The argument must be a floating-point value. The value is converted to the
shortest possible decimal string using fixed or scientific format. The number of
significant digits in the resulting string is given by the precision specifier in the format
string—a default precision of 15 is assumed if no precision specifier is present.Trailing
zeros are removed from the resulting string, and a decimal point appears only if
necessary. The resulting string uses fixed point format if the number of digits to the
left of the decimal point in the value is less than or equal to the specified precision,
and if the value is greater than or equal to 0.00001. Otherwise the resulting string uses
scientific format.

Number. The argument must be a floating-point value. The value is converted to a
string of the form "-d,ddd,ddd.ddd...". The "n" format corresponds to the "f" format,
except that the resulting string contains thousand separators.

Money. The argument must be a floating-point value. The value is converted to a string
that represents a currency amount. The conversion is controlled by the CurrencyString,

125 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

CurrencyFormat, NegCurrFormat, ThousandSeparator, DecimalSeparator, and
CurrencyDecimals global variables or their equivalent in a TFormatSettings data
structure. If the format string contains a precision specifier, it overrides the value given
by the CurrencyDecimals global variable or its TFormatSettings equivalent.

P Pointer. The argument must be a pointer value. The value is converted to an 8
character string that represents the pointers value in hexadecimal.

s String. The argument must be a character, a string, or a PChar value. The string or
character is inserted in place of the format specifier. The precision specifier, if present
in the format string, specifies the maximum length of the resulting string. If the
argument is a string that is longer than this maximum, the string is truncated.

X Hexadecimal. The argument must be an integer value. The value is converted to a
string of hexadecimal digits. If the format string contains a precision specifier, it
indicates that the resulting string must contain at least the specified number of digits;
if the value has fewer digits, the resulting string is left-padded with zeros.

Conversion characters may be specified in uppercase as well as in lowercase—both produce the
same results.

For all floating-point formats, the actual characters used as decimal and thousand separators are
obtained from the DecimalSeparator and ThousandSeparator global variables or their
TFormatSettings equivalent.

Index, width, and precision specifiers can be specified directly using decimal digit string (for
example "%10d"), or indirectly using an asterisk character (for example "%*.*f"). When using an
asterisk, the next argument in the argument list (which must be an integer value) becomes the
value that is actually used.

126 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid virtual cells

Through virtual cells, the grid can not only display content that does not have to be stored in grid
Cells but can also apply dynamic transformations of cell contents for display. Virtual cells are
achieved through the OnGetDisplText event that is triggered just before a cell needs to be displayed
or its contents need to be retrieved (like during a print or export) As the cell text is only requested
when it is needed, virtual cells are very fast and efficient. The OnGetDisplText is declared as:

TGetDisplTextEvent = procedure(Sender: TObject; ACol,ARow: Integer; var Value: string) of object;

The text that needs to be displayed in a cell with coordinates ACol, ARow is set in the Value
parameter.

Example: dynamic HTML formatting of cell text

As it is often inconvenient to set text with HTML tags in the grid itself (for later editing / saving
etc...), the OnGetDisplText is an ideal way for setting only the desired text in the grid cell and
apply formatting only separately for displaying. In this simple example, text is set bold for the first
column by :

procedure TForml.AdvStringGridlGetDisplText (Sender: TObject; ACol,ARow:
Integer; var Value: string);

begin
if ACol = 1 then
Value := '' + Value + '';
end;

Example: dynamic number formatting

Suppose that numeric info is stored in the grid cells with a higher precision than required to display.
In this case, the data can be reformatted dynamically with a routine such as :

procedure TForml.AdvStringGridlGetDisplText (Sender: TObject; ACol,ARow:
Integer; wvar Value: string);
var
f: Double;
Err: Integer;
begin
Val (Value, £,Err) ;
Value := Format ('%.2f',[f]);
end;

To display virtual Unicode text in the grid, an equivalent event OnGetDisplWideText is available.
This works identical to OnGetDisplText except that its value parameter is a widestring.

127 | Page

TMS SOFTWARE
tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid hints

TadvStringGrid features a lot of built-in capabilities to display various types of hints.

Regular hints

The hints are enabled by the property grid.ShowHint set to true. The color of the hint window can
be set with the property grid.HintColor. The main hint text is set through the grid.Hint property and
behaves like all hints for VCL components. In addition to this, following hint properties exist:

AnchorHint When true, the event OnAnchorHint is triggered when the mouse is over a
hyperlink in HTML formatted text. Unless the OnAnchorHint specifies another
hint text, the hint text is by default the value of the anchor.

HintShowCells When true, a hint is displayed for each cell showing the cell contents. For
each cell, the event OnGridHint is triggered with which a hint text can be set
for the grid cell which coordinates are in the OnGridHint parameter list

HintShowLargeText | When true, a hint is displayed for cells containing text that is wider than the
cell width. The hint displays the full text when the mouse is over the cell

HintShowSizing When true, a hint is displayed during column or row sizing in the grid, showing
the size in pixels of the column or row

ScrollHints When true, the row index or column index of the scroll position is displayed in
a hint over the scrollbar

For all hints used in the grid, the HTMLHint property setting determines whether HTML tags are
rendered in the hint window or not. By default this is false meaning that any HTML tags in a hint
text are stripped before being displayed.

Example: using hidden cell data to add to a HTML formatted hint text

The grid is filled with flight information in separate cells and in the OnGridHint event, the full flight
information is displayed in the hint whenever the mouse is over the row:

Grid.Cells[0,1] := ‘AAT709";
Grid.Cells[1,1] := ‘American Airlines’;
Grid.Cells[2,1] := ‘New York’;
Grid.Cells[3,1] := ’'USA’;
Grid.Cells[4,1] := "2:00 AM’;
Grid.HideColumn (4) ;

Grid.ShowHint := True;

Grid.HTMLHint True;

procedure TForml.AdvStringGridlGridHint (Sender: TObject; ARow,
ACol: Integer; wvar hintstr: String);

begin
hintstr := ‘’+Grid.Cells[0,ARow] +’' : '+ Grid.Cells[1l,ARow] +’,

128 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

("+ Grid.Cells[2,ARow]+’ - ' + Grid.Cells[3,ARow] + ')’ + '"+ Grid.Cells[4,ARow]+’';

end;

To display a hint with Unicode text, an equivalent event OnGridWideHint is available. This works
identical to OnGridHint except that its hintstr parameter is a widestring.

Important note: in order to have the hint with HTML tags rendered as HTML, it is required to put the
THTMLHint component on the form. The THTMLHint component is included in the TMS Component
Pack Pro and is responsible for the actual HTML formatted rendering of hints.

Office 2007 hints

The grid can also display the richer Office 2007 style hints. This hint consists of a hint title, a hint
picture, multiline hint text and optionally hint help information. The settings for the OfficeHint are
found under grid.OfficeHint. Note that in order to have Office hints with TAdvStringGrid, the
TAdvOfficeHint (available separately or in TMS Component Pack) must be added on the form. The
hint title can be set at design-time via grid.OfficeHint.Title or it can be set dynamically from the
OnGridHint event. In this code snippet, a generic long text is set to show an Office hint like in the
screenshot below:

procedure TForml.AdvStringGridlGridHint (Sender: TObject; ARow, ACol:
Integer; var hintstr: string);

begin
AdvStringGridl.OfficeHint.Title := 'An Office 2007 hint';
hintstr := 'TAdvStringGrid now provides rich Office 2007 style hints for
cells. Any long text can be set dynamically from the OnGridHint
event.';
end;
0 3 86 20
27 67 31 16
37 42 8 47
7

An Office 2007 hint

9 @ TAdvStringGrid now provides rich
Office 2007 style hints for cells.

53 Any long text can be set
15 dynamically from the OnGridHint
event
32
Press F1 for more help.
87 25 rEd 97

129 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid search & replace text

Locating in which cell some text can be found is done with the method Find:

function Find(StartCell: TPoint; s:string; FindParams: TFindParams): TPoint;

StartCell contains the cell coordinates where to start the search for the text. If StartCell is equal to
-1,-1 this means the search should start in the first cell of the grid. The parameter s contains the
text to search for and the options for the search are set in the FindParams. When text is found, the
Find function returns the grid coordinates of the cell found, if not the function returns (-1,-1)

FindParams is a set of options that can include:

TFindParameters = (fnMatchCase,fnMatchFull,fnMatchRegular,fnDirectionLeftRight,

fnMatchStart,fnFindIinCurrentRow, fnFindinCurrentCol,fnincludeFixed,fnAutoGoto,

fnlgnoreHTMLTags,fnBackward,fnincludeHiddenColumns,fnFindinPresetCol,fnFindinPresetRow,fnSel
ectedCells,fnincludeHiddenRows);

fnAutoGoto When included, the Find method automatically focuses the cell where
the text is found
fnBackward When included, search is backwards, i.e. from right to left or from

bottom to top

fnDirectionLeftRight

When included, search is going from left to right cells instead of going
from top to bottom cells first

fnFindInCurrentCol

When included, search happens only in current selected column

fnFindInCurrentRow

When included, search happens only in current selected row

fnFindInPresetCol

When included, search is limited to the column set by public property
grid.FindCol

fnFindInPresetRow

When included, search is limited to the row set by public property
grid.FindRow

fnignoreHTMLTags

When included, HTML tags are ignored during the search

fnincludeFixed

When included, search is also done in the fixed columns

fnincludeHiddenColumns

When included, search is performed in hidden columns as well

fnincludeHiddenRows

When included, search is performed in rows hidden by closed nodes as
well. When text is found in a row in a closed node and fnAutoGoto is set,
the node will be opened automatically

fnMatchCase When included, the search is case sensitive
fnMatchFull When included, the full cell text must be equal to the text searched for
fnMatchRegular When included, a match expression can be used containing *, ? as well as

greater than or less than specifiers and multiple expressions can be

130 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

combined with AND, OR, NOT

Example:
A* * >M : Searches for text starting with A or greater than M
I7A : Text does not have a letter A on second position

fnMatchStart When included, text searched for needs to match from first character

fnSelectedCells When included, search is limited to selected cells

Example: searching for all occurrences of a text in the grid

var
Loc: TPoint;
Fp: TFindParams;

begin

Loc := Point(-1,-1);
Fp := [fnMatchRegular, fnAutoGoto];
repeat

Loc := Grid.Find(loc, ‘A*’,fp);

if not ((loc.X = -1) or (loc.Y = -1)) then

ShowMessage (‘Text found at : ‘+IntToStr (loc.x)+’:’+IntToStr (loc.y));

until (loc.X = -1) or (loc.Y = -1);

ShowMessage (‘No more occurrences of text found’);

end;

Note 1:
For searching an empty cell in the grid, the search string that can be used is “”.
Note 2:

For searching a Unicode string, the equivalent method FindWide() is available. In the FindWide
method, the option fnMatchRegular is not supported.

Replacing text can be done in a similar way. The grid provides the method Replace for this with:
grid.Replace(origStr, newStr, FindParams: TFindParams);

The same parameters as for the Find() function are available for the replace. This code snippet will
perform a replace of any cell starting with ‘3’ by ‘A’ in column 2:

AdvStringGridl.Col := 2;
AdvStringgridl .Replace('3','A'", [fnFindInCurrentCol, fnMatchStart]);

131 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid disjunct row, column and cell selection

In normal circumstances, setting goRangeSelect to true in grid.Options enables selecting multiple
cells in the grid but all selected cells are within a rectangle. With TAdvStringGrid, it is possible to
select disjunct rows, columns or cells. This is enabled by setting either DisjunctRowSelect,
DisjunctColSelect or DisjunctCellSelect in grid.MouseActions to true. Note that the use of these
selection methods is mutually exclusive. Where the selected cells can normally be retrieved using
the grid.Selection: TGridRect property, new properties are introduced to get or set the disjunct

selected rows, columns or cells.

Disjunct row selection

To enable disjunct row selection, set grid.MouseActions.DisjunctRowSelect to true as well as
goRowSelect in grid.Options. Disjunct row selection is done by Ctrl + left mouse click on the rows to

toggle the selection.

Programmatical row selection control is done with following methods:

procedure ClearRowSelect;

Removes selection from all rows

procedure SelectRows(RowIndex, RCount: Integer);

Selects RCount rows starting from Rowlndex

property RowSelect[RowIndex]: Boolean;

Property with which row selection can be get
or set for row Rowlndex

property RowSelectCount: Integer;

Retrieves the total number of selected rows

procedure RemoveSelectedRows

Removes all selected rows in the grid

procedure RemoveUnSelectedRows

Removes all not selected rows in the grid

Disjunct column selection

To enable disjunct column selection, set grid.MouseActions.DisjunctColSelect to true. Disjunct
column selection is done by Ctrl + left mouse click on the columns to toggle the selection.

Programmatical column selection control is done with following methods:

procedure ClearColSelect;

Removes selection from all columns

procedure SelectCols(Colindex, CCount: Integer);

Selects CCount rows starting from Collndex

property ColSelect[ColIndex]: Boolean;

Property with which column selection can be
get or set for column Collndex

property ColSelectCount: Integer;

Retrieves the total number of selected columns

procedure RemoveSelectedCols

Removes all selected columns in the grid

Procedure RemoveUnselectedCols

Removes all unselected columns in the grid

Disjunct cell selection

The methods and properties to be used for this are:

Grid.MouseActions.DisjunctCellSelect: Boolean; Setting this true enables disjunct cell selection with

Ctrl mouse clicks

Grid.SelectedCells[col,row: Integer]: Boolean; Property to allow setting or clearing selection on a

single cell

Grid.SelectedCellsCount: Integer; Returns the number of disjunct selected cells (read-only)

Grid.SelectedCell[i: Integer]: TGridCoord; Returns the i'th selected cell grid coordinates (read-only)

132 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Grid.ClearSelectedCells; Clears all disjunct selected cells in the grid

Example: checkerboard cell selection

To make a checkerboard disjunct cell selection, following code was written :

var
i,j: Integer;

begin
AdvStringGridl.ClearSelectedCells;
with AdvStringGridl do

for 1 := 1 to ColCount - 1 do
for 7 := 1 to RowCount - 1 do
SelectedCells[i,j] := (odd(i) and odd(j)) or (not odd(i) and not
odd(3)) s

end;

This is the method to show a list of selected cells in a listbox :

var
i: Integer;
gc: TGridCoord;

begin
listboxl.Items.Clear;
listboxl.Items.Add('Nr. of cells : ' +
IntToStr (AdvStringGridl.SelectedCellsCount)) ;
for i := 1 to AdvStringGridl.SelectedCellsCount do
begin
gc := AdvStringGridl.SelectedCell[i - 1];
listboxl.Items.Add (IntToStr(gc.X)+':"'+IntToStr(gc.Y));
end;
end;

133 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid cell check architecture

A mechanism is available to provide cell value checking, error marking and cell autocorrecting
components with TAdvStringGrid. This opens the capability to add spell checking components to
TAdvStringGrid as in this case an interface is provided to use the Addict Spell Checking product with
TAdvStringGrid.

The main concept is that a TAdvStringGridCheck derived component can be attached to the
CellChecker property of TAdvStringGrid. When a Checker component is attached, TAdvStringGrid
will call its base methods MarkError and Correct at the right time to make checking and correcting
possible after inplace editing is finished or when a programmatic call to the various new Check
methods is made.

This is the base class for the Checker component from which all custom checker components must
be derived :

TAdvStringGridCheck = class (TComponent)

public
function MarkError (ACol,ARow: Integer; s:string) :string; virtual;
function Correct (ACol,ARow: Integer; s:string) :string; virtual;
procedure StartCheck; virtual;
procedure StopCheck; virtual;

published
property AutoCorrect: Boolean read FAutoCorrect write FAutoCorrect;
property AutoMarkError: Boolean read FAutoMarkError write FAutoMarkError;
property GotoCell: Boolean read FGotoCell write FGotoCell;
property UseCorrect: Boolean read FUseCorrect write FUseCorrect;
property UseMarkError: Boolean read FUseMarkError write FUseMarkError;

end;

The purpose of the properties AutoCorrect and AutoMarkError is to set whether the Checker
component should be used to perform auto correction or auto error marking after editing each cell.
The UseCorrect and UseMarkError properties control whether the correction or error marking is used
when calling the grid's various Check methods, ie. CheckCell, CheckCells, CheckCol, CheckRow and
CheckGrid. Optionally, the GotoCell is used to activate each cell when doing multiple cell checks
with the various Check methods to give a visual indication to the user which cell is being checked.

In this base class, the methods Correct and MarkError do nothing. They simply return the cell
content as is. With a real checker, these methods should either return the corrected cell's value or
the cell's value with markers for words with errors. Error Markers (ie. red line under words with
errors) can be applied by using the built-in HiLight function in the base TAdvStringGridCheck
component.

As a sample implementation, a Checker component has been provided that does nothing more than
capitalize each first letter of a string. The TCapitalCheck component is thus derived from
TAdvStringGridCheck and implements only one method, ie. the Correct method in following way:

function TCapitalCheck.Correct (ACol,ARow: Integer;s: string): string;
var

Prev, PrevPrev:Char;

i: Integer;
begin

Prev := " ';

PrevPrev := '.';

for i := 1 to Length(s) do
begin

134 | Page

http://www.addictivesoftware.com/

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

if (Prev = ' ') and (PrevPrev in ['!','2',"'.']) and (s[i] <>
Upcase(s[i])) then
s[i] := UpCase(s[i]):
PrevPrev := Prev;
Prev := s[i];
end;

Result := s;
end;
It will auto-correct an entered value of "this is a test. i should start with a capital” to "This is a test.

| should start with a capital”

Based on this architecture, a component TAddictCheck is provided that uses the Addict Spell
Checker to perform spell checking in TAdvStringGrid or other TAdvStringGrid based products. Again
this is all possible without writing any code, just drop the Addict Spell Checker components on your
form, set all Addict properties to your preferences, add a TAddictCheck component on the form and
assign the TAddictSpell component to the TAddictCheck's AddictSpell property. Next, assign the
TAddictSpell component to the TAdvStringGrid's CellChecker property. Control with the
AutoCorrect, AutoMarkError, GotoCell, UseCorrect, UseMarkError and ShowDialog properties how
the Addict Spell Checker should be used with TAdvStringGrid.

135 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid add-on dialogs
TAdvStringGrid comes with a number of add-on dialogs:

TAdvGridPrintSettingsDialog: dialog to configure the various printsettings of the grid
TAdvGridHTMLSettingsDialog: dialog to configure the various HTML export settings of the grid
TAdvPreviewDialog: dialog to show a print preview

TAdvGridReplaceDialog: find & replace dialog

TAdvGridFindDialog: find dialog

TAdvGridimportDialog: CSV/text file import dialog

The concept of the add-on dialogs is simple. The dialog components can be dropped on the form
and their Grid property is assigned to the TAdvStringGrid instance on the form. The dialogs are
displayed with the Execute method.

The TAdvGridlmportDialog has two methods : OpenAndExecute and Execute. When calling
OpenAndExecute, it will first show a file open dialog to pick a .TXT or .CSV file and preview the file
in the dialog. From there, the delimiter or column positions can be set. Choosing OK will load the
file in the associated grid.

. Y
Impert settings &J
(2) Delimited] i)
@(;) &) () Automatic
@) @) () custom
@) Fixed
......... R EE e e
[} 20 T
Cars Model Brand
car 1 Elise Lotus
Car 2 911 GI3 RS Porsche
Car 3 F430 Ferrari
Car 5 EE Jaguar
[First row headers ok] [e

136 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid Unicode support

TAdvStringGrid has built-in support to display, print, edit and sort Unicode strings on Windows NT,
2000, XP and Vista on Delphi versions prior to Delphi 2009. From Delphi 2009 all strings in
TAdvStringGrid are by default Unicode and the specific Unicode support is therefore deprecated in
Delphi 2009. Note that in order to use Unicode, a font that supports the full Unicode character set is
required. The Microsoft “Arial Unicode MS” is such a font. The interface to put Unicode strings in a
grid cell is done through the property:

Grid.WideCells[Col,Row]: widestring;

Unicode editing

TAdvStringGrid has support for inplace editing of Unicode cells with a normal edit control and a
dropdown combobox and dropdownlist combobox. The inplace editors are specified with the
OnGetEditorType event where these 3 types are defined:

edUniEdit: Unicode inplace editor

edUniEditBtn: Unicode inplace editor with attached button
edUniComboEdit: Unicode dropdown combobox
edUniCombolList: Unicode dropdownlist combobox
edUniMemo: Unicode memo editor

The Unicode inplace editors can be directly accessed with

Grid.UniEdit : the instance of the inplace Unicode edit control
Grid.UniCombo : the instance of the inplace Unicode combobox control
Grid.UniMemo: the instance of the inplace Unicode memo control

Example: using 3 different Unicode inplace editors in TAdvStringGrid

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType);

begin
case ACol of
1:AEditor := edUniEdit;
2 :begin
AEditor := edUniComboEdit;

AdvStringGridl.UniCombo.Items.Clear;

AdvStringGridl.UniCombo.Items.Add (‘'London’) ;

AdvStringGridl.UniCombo.Items.Add (‘New York’);

AdvStringGridl.UniCombo.Items.Add (‘Paris’);
end;

3:begin
AEditor := edUniCombolList;
AdvStringGridl.UniCombo.Items.Clear;
AdvStringGridl.UniCombo.Items.Add (‘'United Kingdom’) ;
AdvStringGridl.UniCombo.Items.Add (‘'United States’);
AdvStringGridl.UniCombo.Items.Add (‘France’) ;
end;

end;

137 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

end;

Unicode sorting

Enabling sorting in TAdvStringGrid that takes Unicode into account is done by instructing the sort
function to use Unicode for the selected columns. This is done through the OnGetFormat event with
the Unicode sort style: ssUnicode

Example: setting sort style for selected columns to Unicode

procedure TForml.AdvStringGridlGetFormat (Sender: TObject; ACol: Integer;
var AStyle: TSortStyle; wvar aPrefix, aSuffix: String);

begin
if (ACol in [2,4]) then
AStyle := ssUnicode;
end;

Unicode virtual cell text

The event OnGetDisplWideText can be used to set virtual cell Unicode text in grid cells.
Unicode hints

The event OnGridWideHint can be used to set a Unicode hint text for a cell

138 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE
TAdvStringGrid Undo/Redo add-on component

To facilitate Undo/Redo handling of editing in cells, the TAdvGridUndoRedo component can be
used. Drop this component on the form and assign it to the TAdvStringGrid UndoRedo property. If
the property MaxLevel of the Undo/Redo component is 0, this means it will store all values for an
unlimited Undo/Redo otherwise it will only remind the latest changes for Undo/Redo.

To perform the undo and redo actions, the methods

TAdvGridUndoRedo.Undo
and
TAdvGridUndoRedo.Redo

are available.

The public property TAdvGridUndoRedo.Level normally points to the latest performed editing action
in the grid. Upon calling Undo, the Level property is decremented to point to the previous action.
With a Redo, the Level is incremented again until it has reached the last action.

Note: Undo/Redo applies to cell editing only. Other changes like setting cell properties for example
is not maintained in the TadvGridUndoRedo component.

139 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid column state persistence

Often it is desirable to allow that the user can resize columns, move columns, hide columns of a
grid. After a user customizes the view of the grid this way, it is convenient to persist this setting
and when the application is restarted, these customizations of the user are restored exactly as the
user left the application. TAdvStringGrid offers saving column sizes with grid.SaveColSizes and
offers saving positions of columns with grid.SaveColPositions. With these 2 methods, it is possible to
save column widths & column positions either to registry or to an INI file. The location where the
settings are persisted is defined in grid.ColumnSize.

An even easier and more convenient method to persist column size, column position and column
visibility is available through two methods: grid.ColumnStatesToString:string and
grid.StringToColumnStates(s: string). This way, the full column state can be persisted in a registry
key, INI file value or database field. One key function for persisting column order is to set a
reference column order. The method ColumnStatesToString saves the column ordering relative to
the reference order so it is important that during grid initialization, the reference order is set by
calling grid.SetColumnOrder.

Example: grid with column sizing & moving enabled and two buttons to save & restore state

procedure TForml.FormCreate (Sender: TObject) ;
var
i: integer;
begin
{no fixed columns in grid}
advstringgridl.FixedCols := 0;
advstringgridl.ColCount := 10;
advstringgridl.RowCount := 50;
{fill grid with easy to recognize data for this demo}
advstringgridl.LinearFill (false);
advstringgridl.AutoNumberRow (0) ;
{enable column moving & column sizing}
advstringgridl.Options := advstringgridl.Options + [goColSizing,
goColMoving] ;

{add buttons in the column header cells that will allow column hiding}
for i := 0 to AdvStringGridl.ColCount - 1 do
advstringgridl.AddButton (i, 0,16,16, 'X',haRight,vaTop) ;

{make sure that buttons on a readonly cell are not disabled}
advstringgridl.ControlLook.NoDisabledButtonLook := true;

{important call to set the reference column order of the grid}

advstringgridl.SetColumnOrder;
end;

procedure TForml.SaveBtnClick (Sender: TObject) ;

var
inifile: TInifile;
begin
inifile := TIniFile.Create('.\grid.ini'");

inifile.WriteString ('GRID', 'SETTINGS',advstringgridl.ColumnStatesToString) ;
inifile.Free;
end;

procedure TForml.LoadBtnClick (Sender: TObject) ;
var

inifile: TInifile;

140 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

s: string;

begin
inifile := TIniFile.Create('.\grid.ini'");
s := inifile.ReadString('GRID', 'SETTINGS',"");

inifile.Free;

if s <> '' then
AdvStringGridl.StringToColumnStates (s) ;
end;

Note: the grid has methods SetColumnOrder and ResetColumnOrder. As explained, a reference
column order can be set by calling grid.SetColumnOrder, for example during grid initialization. If
column moving is allowed (by setting goColMoving = true in grid.Options) you can automatically
reset the column to the original reference column order by calling grid.ResetColumnOrder.

141 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

TAdvStringGrid import/export to XLS files via TAdvGridExcellO

With the component TAdvGridExcellO directly reading and writing Excel 97, 2000, 2003 files without
the need to have Excel installed on the machine is possible.

With these quick steps, you are up and running:
1) drop TAdvStringGrid on a form as well as the component TAdvGridExcellO

2) Assign the instance of TAdvStringGrid to the AdvStringGrid property of the TAdvGridExcellO
component

3) You can set TAdvGridExcellO properties to control the Excel file read / write behaviour but in
most cases default settings will be ok.

4) To read Excel files, use
advgridexcelio.XLSImport(FileName);

or
advgridexcleio.XLSImport(FileName,SheetName);

5) To write the contents of TAdvStringGrid to an XLS file use
advgridexcelio.XLSExport(filename);

Properties of TAdvGridExcellO

Many properties are available in TAdvGridExcellO to customize importing & exporting of Excel files
in the grid.

AutoResizeGrid: Boolean;

When true, the dimensions of the grid (ColCount, RowCount) will adapt to the number of imported
cells.

DateFormat: string;

Sets the format of dates to use for imported dates from the Excel file. When empty, the default
system date formatting is applied.

GridStartCol, GridStartRow: integer;
Specifies from which top/left column/row the import/export happens

Options.ExportCellFormats: Boolean;

When true, cell format (string, integer, date, float) is exported, otherwise all cells are exported as
strings.

Options.ExportCellMargings: Boolean;
When true, the margins of the cell are exported

Options.ExportCellProperties: Boolean;

142 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

When true, cell properties such as color, font, alignment are exported
Options.ExportCellSizes: Boolean;

When true, the size of the cells is exported

Options.ExportFormulas: Boolean;

When true, the formula is exported, otherwise the formula result is exported
Options.ExportHardBorders: Boolean;

When true, cell borders are exported as hard borders for the Excel sheet
Options.ExportHiddenColumns: Boolean;

When true, hidden columns are also exported

Options.ExportHTMLTags: Boolean;

When true, HTML tags are also exported, otherwise all HTML tags are stripped during export
Options.ExportOverwrite: Boolean;

Controls if existing files should be overwritten or not during export
Options.ExportOverwriteMessage: Boolean;

Sets the message to show warning to overwrite existing files during export
Options.ExportPrintOptions: Boolean;

When true, the print options are exported to the XLS file
Options.ExportShowGridLines: Boolean;

When true, grid line setting as set in TAdvStringGrid is exported to the XLS sheet
Options.ExportShowInExcel: Boolean;

When true, the exported file is automatically shown in the default installed spreadsheet after
export.

Options.ExportSummaryRowBelowDetail: Boolean;

When true, summary rows are shown below detail rows in the exported XLS sheet
Options.ExportWordWrapped: Boolean;

When true, cells are exported as wordwrapped cells
Options.ImportCellFormats: Boolean;

When true, cells are imported with formatting as applied in the XLS sheet

143 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Options.ImportCellProperties: Boolean;

When true, cell properties such as color, font, alignment are imported
Options.ImportCellSizes: Boolean;

When true, the size of cells is imported

Options.ImportFormulas: Boolean;

When true, the formula is imported, otherwise only a formula result is imported
Options.ImportImages: Boolean;

When true, images from the XLS sheet are imported
Options.ImportLockedCellsAsReadOnly: Boolean;

When true, cells that are locked in the XLS sheet will be imported as read-only cells

Options.ImportPrintOptions: Boolean;

When true, print settings as defined in the XLS sheet will be imported as grid.PrintSettings
Options.UseExcelStandardColorPalette: Boolean;

When true, colors will be mapped using the standard Excel color palette, otherwise a custom
palette will be included in the XLS sheet.

TimeFormat: string;

Sets the format of cells with a time. When no format is specified, the default system time format is
applied.

UseUnicode: Boolean;

When true, cells will be exported / imported as Unicode cells (for versions older than Delphi 2009,
from Delphi 2009, all cells are Unicode by default)

X1sStartCol, XlsStartRow: integer;

Sets the top/left cell from where the import/export should start
Zoom: integer;

Sets the zoom level to set for the exported XLS file

ZoomSaved: Boolean;

When true, the zoom factor set with AdvGridExcel.Zoom is saved to the XLS file.

Formatting Excel cells when exporting from with TAdvGridExcellO

144 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

By default there is no automatic conversion between the numeric formats in AdvStringGrid and
Excel since they use different notations.

Imagine you have the number 1200 in the grid, formatted as "$1,200" .

If you set TAdvGridExcellO.Options.ExportCellFormat to true, the cell will be exported as the string
"$1,200" to Excel. It will look fine, but it will not be a "real” number, and can not be used in Excel
formulas.

If you set TAdvGridExcellO.Options.ExportCellFormat to false, the cell will be exported as the
number 1200. It will be a real number, that can be added later in Excel, but it will look like "1200"
and not "$1,200"

To get a real number that is also formatted in Excel you need to set ExportCellFormat := false, and
use the OnCellFormat event in AdvGridExcellO, and set the desired format for the cell there.

For example, to have 1200 look like "$1,200" for the numbers in the third column, you could use this
event:

procedure TMainForm.AdvGridExcelIOlCellFormat (Sender: TAdvStringGrid;
const GridCol, GridRow, X1lsCol, XlsRow: Integer; const Value: WideString;
var Format: TFlxFormat) ;

begin
if (GridCol = 3) then Format.Format:='S$S #,##0';

end;

The string you need to write in "Format.Format" is a standard Excel formatting string. It is
important to note that this string must be in ENGLISH format, even if your Windows or Excel is
not in English.

This means that you must use "." as decimal separator and "," as thousands separator, even if they
are not the ones in your language.

For information on the available Formatting string in Excel you can consult the Excel
documentation, but there is normally a simple way to find out:

Let's imagine that we want to find out the string for a number with thousands separator and 2
decimal places. So the steps are:
1) Open an empty Excel file, right click a cell and choose "Format Cells”

AL - |
= Calibri ~|11 ~| A" o7 &3 - o ¥ N
] Bookl AxE-% 4
A B IE G- A -osl %
1 l
2 d Cut
3 53| Copy
1 % Paste
5 Paste Special...
6 Insert...
7
Delete...
8
5 Clear Contents
10 Filter 3
11 Sort »
12 —d Insert Comment
13 ﬁ" Format Cells...
14 Pick Fram Drop-down List...

Once the window opens, choose the nhumeric format you want. Here we will choose a numeric
format with 2 decimal places and a thousands separator

145 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

Format Cells [l =

Number | Alignment | Font | Border | Fil | Protection

Category:

General | | Sample
Currency
Accounting

Date

Time []ise 1000 Separator ()
Preentage 200, separatar L)
Fraction
Sdentific
Text
Spedial
Custom -1.234,10

Decimal places: |2 =

Mumber is used for general display of numbers, Currency and Accounting offer specialized formatting
for monetary value.

Once we have the format we want, we choose "Custom” in the left listbox. There is no need to close
the dialog.

Format Cells m
Mumber Alignmentl Font I Border I Fil IProtechon
Category:
General ~ | Sample
Number
Currency
Accounting .
Date r]
Time #.##0,00
Percentage e d -
Fraction 0 K
Sdentific 0,00 H
Text = 770
#.##0,00
#.8#0;-#, £H0

##20;[Red]-2. 50

#,#20,00;-%, 220,00

#,#20,00;[Red]-2. 20,00

€ # #80;€ -#, £50

€ #,#20; Red)€ -2.320 hd

=]

Type the number format code, using one of the existing codes as a starting point.

[OK] Cancel

The string that shows in the "Type:" editbox is the one we need to use, converted to English

notation. In this example, since our decimal separator is ",” and the thousands "." we need to switch
them in the final string.

So, the string showing is "#.##0,00", and we need to switch "," and ".", so the final string is
"#,##0.00"

and the event is:

procedure TMainForm.AdvGridExcelIOlCellFormat (Sender: TAdvStringGrid;
const GridCol, GridRow, X1sCol, XlsRow: Integer; const Value: WideString;
var Format: TFlxFormat) ;
begin
if (GridCol = 3) then
Format.Format := "#,##0.00";
end;

146 | Page

tmssoftware

TMS SOFTWARE
TADVSTRINGGRID
DEVELOPERS GUIDE

TAdvStringGrid export to RTF files via TAdvGridRTFIO

With the TAdvGridRTFIO component it is possible to export a grid to a RTF file without the need to
have any other software installed such as MS Word. TAdvGridRTFIO is an add-on component that is
included with TAdvStringGrid. It is a separate component and as such, when not used, the RTF
capabilities do not increase your application executable size unnecessarily.

Using TAdvGridRTFIO is very simple. Drop the component on the form and assign your
TAdvStringGrid or descendent component to the TAdvGridRTFIO.AdvStringGrid property. Call
TAdvGridRTFIO.ExportRTF (FileName) to do the actual export.

Options for the export are controlled by various TAdvGridRTFIO properties:

GridStartCol, GridStartRow: sets the top left row from where the export should start. With this
property you can control whether fixed cells are exported or not.

Options:
When true, HTML formatted cell text is automatically converted
ConvertHTML to rich text formatting otherwise the cell text is exported
without any attributes
ExportBackground When true, grid cell background colors are exported

ExportCellProperties

When true, grid cell properties such as font style, name, size &
alignment are exported

ExportHiddenColumns

When true, hidden cells are also exported

Exportimages

When true, images are exported

ExportMSWordFeatures

When true, MS Word specific rich text features are exported such
as column merging

ExportOverwrite

Sets the mode for

ExportOverwriteMessage

Sets the message to be displayed as warning to overwrite a file

ExportRTFCell

When true, grid cells with rich text are also exported as rich text,
otherwise the cell text is exported without the rich text
attributes.

ExportShowlInWord

When true, MS Word is automatically opened with the exported
RTF file

147 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Using the ICellGraphic interface for cells

Interfaces are a powerful way to remove code dependencies and as a result allow to
better tailer code size to feature use. In TAdvStringGrid it is possible to add an interfaced
object to a cell and have the interface paint the cell. This way, all kinds of small or large
code can be used to paint a cell without forcing any user who is not interested in a
particular graphical feature in the grid to link the code.

To achieve this, the interface ICellGraphic was created. This interface currently has only
four methods:

ICellGraphic = Interface

procedure Draw (Canvas: TCanvas;R: TRect; Col,Row: integer; Selected:
boolean; Grid: TAdvStringGrid);

function CellWidth: integer;

function CellHeight: integer;

function IsBackground: boolean;
end;

The first method Draw() is called to draw the cell Col,Row within rectangle R on the
canvas Canvas. An extra parameter Selected indicates the selection state of the cell. Two
functions return the desired size of the graphic in the cell. These functions are used for
autosizing in the grid to adapt the cell size automatically to the size of the graphic. A
function IsBackground is used to inform the grid whether text still needs to be drawn on
top of the graphic or not.

To start using this interface, we need to create a class that implements the interface. In
this sample, we propose 3 classes that implement the interface: TSimpleGraphicCell,
TComplexGradientCell and TImageCell. TSimpleGraphicCell just demonstrates the
concept. TComplexGradient & TImageCell allow to use specific GDI+ features in the grid.
Note that by implementing the GDI+ features in the interfaced class, TAdvStringGrid
remains completely independent of GDI+ code. So, users who prefer not to include a
GDI+ dependency can keep using TAdvStringGrid as-is while users who want to exploit
the extra GDI+ features can benefit from this now.

The TSimpleGraphicCell class code is:

TSimpleGraphicCell = class (TInterfacedPersistent, ICellGraphic)
procedure Draw (Canvas: TCanvas;R: TRect; Col,Row: integer; Selected:
boolean; Grid: TAdvStringGrid) ;
function CellWidth: integer;
function CellHeight: integer;
end;

function TSimpleGraphicCell.CellHeight: integer;

begin

Result := 0; // by returning zero, this graphic cell has no minimum cell
height requirement
end;

function TSimpleGraphicCell.CellWidth: integer;

begin

Result := 0; // by returning zero, this graphic cell has no minimum cell
width requirement
end;

procedure TSimpleGraphicCell.Draw(Canvas: TCanvas; R: TRect; Col, Row:

148 | Page

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

integer;
Selected: boolean; Grid: TAdvStringGrid);

begin
Canvas.Pen.Color := clRed; // draw a simple diagonal line in the cell
Canvas.Pen.Width := 2;

Canvas.MoveTo (R.Left, R.Top):;
Canvas.LineTo (R.Right, R.Bottom);
end;

function TSimpleGraphicCell.IsBackground: boolean;
begin

Result := true;
end;

To use the interface in a cell, this can be done with the code:

var
sg:TSimpleGraphicCell;

begin
sg := TSimpleGraphicCell.Create;
AdvStringGridl.AddInterfacedCell (2,2,5s9);
end;

We have created two additional interfaced classes that now open up GDI+ capabilities for
use in the grid, ie. adding complex diagonal gradients for example or draw antialiased
PNG images in cells (this uses TGDIPicture & AdvGDIP, two units available in the TMS
Component Pack):

TComplexGradientCell = class (TInterfacedPersistent, ICellGraphic)
private
FStartColor, FEndColor: TColor;
FGradientMode: TLinearGradientMode;
public
procedure Draw (Canvas: TCanvas;R: TRect; Col,Row: integer; Selected:
boolean; Grid: TAdvStringGrid) ;
function CellWidth: integer;
function CellHeight: integer;

property StartColor: TColor read FStartColor write FStartColor;
property EndColor: TColor read FEndColor write FEndColor;
property GradientMode: TLinearGradientMode read FGradientMode write
FGradientMode;
end;

TImageCell = class (TInterfacedPersistent, ICellGraphic)
private
FPicture: TGDIPPicture;
procedure SetPicture (const Value: TGDIPPicture);
public
{ Interface }
procedure Draw (Canvas: TCanvas;R: TRect; Col,Row: integer; Selected:
boolean; Grid: TAdvStringGrid) ;
function CellWidth: integer;
function CellHeight: integer;

constructor Create;

destructor Destroy; override;
property Picture: TGDIPPicture read FPicture write SetPicture;

149 | Page

http://www.tmssoftware.com/site/tmspack.asp
http://www.tmssoftware.com/site/tmspack.asp

TMS SOFTWARE

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

end;

{ TComplexGradientCell }

function TComplexGradientCell.CellHeight: integer;
begin

Result := 0;
end;

function TComplexGradientCell.CellWidth: integer;
begin

Result := 0;
end;

procedure TComplexGradientCell.Draw(Canvas: TCanvas; R: TRect; Col,
Row: integer; Selected: boolean; Grid: TAdvStringGrid);
var

graphics : TGPGraphics;

1inGrBrush: TGPLinearGradientBrush;

begin
// Create GDI+ canvas
graphics := TGPGraphics.Create (Canvas.Handle) ;
1inGrBrush := TGPLinearGradientBrush.Create (MakeRect (r.Left,r.Top,r.Right

- r.Left,r.Bottom - r.Top),ColorToARGB (FStartColor),ColorToARGB (FEndColor),
FGradientMode) ;

graphics.FillRectangle (1inGrBrush, MakeRect (r.Left , r.Top, r.Right -
r.Left , r.Bottom - r.Top));

1linGrBrush.Free;

graphics.Free;
end;

function TComplexGradientCell.IsBackground: boolean;
begin

Result := true;
end;

{ TImageCell }

function TImageCell.CellHeight: integer;
begin

Result := FPicture.Height;
end;

function TImageCell.CellWidth: integer;
begin

Result := FPicture.Width;
end;

constructor TImageCell.Create;

begin

inherited Create;

FPicture := TGDIPPicture.Create;
end;

destructor TImageCell.Destroy;
begin

FPicture.Free;

inherited;
end;

150 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

procedure TImageCell.Draw(Canvas: TCanvas; R: TRect; Col, Row: integer;
Selected: boolean; Grid: TAdvStringGrid);
begin
Canvas.Draw (R.Left, R.Top, FPicture);
end;

function TImageCell.IsBackground: boolean;
begin

Result := false;
end;

procedure TImageCell.SetPicture(const Value: TGDIPPicture);
begin

FPicture.Assign (Value) ;
end;

The use of the TImageCell and TComplexGradientCell is done with following code:

cg := TComplexGradientCell.Create;

cg.StartColor := clBlue;

cg.EndColor := clAqua;

cg.GradientMode := LinearGradientModeHorizontal;
AdvStringGridl .AddInterfacedCell (1, 3,cq);

ig := TImageCell.Create;

ig.Picture.LoadFromFile ('.\personal.png');
AdvStringGridl .AddInterfacedCell (2,4,1q9);

151 | Page

TMS SOFTWARE
tmssoftware TADVSTRINGGRID
DEVELOPERS GUIDE
TAdvStringGrid tips and FAQ
Delphi can't find definition for TFIxFormat when using TAdvGridExcellO

This type is defined in the unit tmsUFIxFormats. Add the unit tmsUFIxFormats to the uses clause and
the problem should be solved.

Using TAdvStringGrid printer settings dialog combined with printer selection.

This code snippet shows how you can show the print setup dialog for users after which the printer
selection is done.

procedure TForml.PrintGrid;

begin
AdvGridPrintSettings.Form.Caption := 'Print overview';
AdvStringGrid.PrintSettings.FitToPage := fpAlways;
AdvStringGrid.PrintSettings.Orientation := polandscape; // initialize to

default poLandscape
if AdvGridPrintSettings.Execute then

begin
Printer.Orientation := AdvStringGrid.PrintSettings.Orientation;
if PrinterSetupDialog.Execute then
begin
AdvStringGrid.PrintSettings.Orientation := Printer.Orientation;
AdvStringgrid.Print;
end;
end;

end;

Vertical bottom or center alignment in the grid

Vertical alignment and wordwrap are mutually exclusive. This is due to a limitation in the Microsoft
Windows text drawing API that does not allow to have wordwrapped text with other vertical
alignment than top alignment. To enable vertically centered or bottom alignment, make sure to set
grid.WordWrap to false.

Using TAdvStringGrid with Multilizer

In order to automatically translate applications that use TAdvStringGrid with Multilizer, exclude the
class TAdvRichEdit in Multilizer. TAdvRichEdit is an internal class only used in TAdvStringGrid as
inplace editor for rich text editing.

Copying a grid as image on the clipboard
Following code copies TAdvStringGrid as an image on the clipboard:

var
bmp: TBitmap;

152 | Page

tmssoftware.com TADVSTRINGGRID

DEVELOPERS GUIDE

clip: TClipboard;

begin
bmp := tbitmap.create;
bmp.Width := advstringgridl.Width;
bmp.Height := advstringgridl.Height;
AdvStringGridl.PaintTo (bmp.Canvas,0,0);
clip := TClipboard.Create;
clip.Assign (bmp) ;
bmp.Free;
clip.Free;

end;

Saving TAdvStringGrid to a JPEG file
With code below, the output of TAdvStringGrid is sent to a JPEG file:

var
pBitmap: TBitmap;
jp: TJPEGImage;

R: TRect;

begin
pBitmap := TBitmap.Create; //create a new instance of a bitmap
jp := TJPEGImage.Create; //create new instance of a jpg file
R := Rect (0,0,950,760); //parameters for rectangle
pBitmap.Height := 622; //set bmp height
pBitmap.Width := 812; //set bmp width

AdvStringGridl.PrintPreview (pBitmap.Canvas,R); //call Preview to paint to
BMP canvas
jp.Assign (pBitmap); //get picture from bitmap for JPG Image
jp.SaveToFile ('c:\temp\Grid.jpg'); //save picture as JPG File
pBitmap.Free;
Jjp.Free;
end;

Setting different max. edit lengths for the inplace editor

If the max. number of characters for editing should be limited, this can be done with then
LengthLimit property of the inplace editor. When LengthLimit is 0, there is no limitation to the nr.
of characters that can be typed in the editor. To set a different max. nr of characters per column,
following code can be used in the OnGetCellEditor event :

procedure TForml.AdvStringGridlGetEditorType (Sender: TObject; ACol,
ARow: Integer; var AEditor: TEditorType) ;

begin
if Assigned (AdvStringGridl.NormalEdit) then
begin
case acol of
1:AdvStringGridl .NormalEdit.LengthLimit := 4;
2:AdvStringGridl .NormalEdit.LengthLimit := 8;

153 | Page

TMS SOFTWARE

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

else
AdvStringGridl.NormalEdit.LengthLimit := 0
end;
end;
end;

This sets the max. edit length for column 1 to 4 characters, for column 2 to 8 eight characters and
unlimited for all other columns.

Printing only selected rows in disjunct row select mode

The disjunct row select mode is flexible to let the user select several non contiguous rows in a grid.
When you want to print only the selected rows, the Print functions do not provide a possibility these
rows. Thanks to the grid's row hiding capabilities this can be easily done by temporarily hide the
non-selected rows, print the grid and then unhide these rows again. The code to hide only the not
selected rows is :

var
i,3: Integer;

begin
i := 1;
with AdvStringGrid do
begin
J := RowCount;
while (i < j) do
if not RowSelect[DisplRowIndex (i)] then
HideRow (1) ;
Inc (i) ;
end;
end;

To unhide the rows again after the print, the method UnHideRowsAll can be called.

Setting an hourglass cursor during lengthy sort operations

Before the sort starts, the OnCanSort event is called. In this event, the crHourGlass cursor can
specified either for the grid or for your application.

When sorting is completed, the OnClickSort event is called, where you can set the cursor back to
normal.

Forcing a visible cell editor when the form is displayed in the grid
In the FormShow event, add these 2 methods :
grid.SetFocus;

grid.ShowInplaceEdit;

154 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

Problems with FILECTRL.OBJ when installing in C++Builder
In C++Builder 6 : Add following line to the package CPP file : USEPACKAGE("vclx.bpi");
In C++Builder 5 : Add following line to the package CPP file : USEPACKAGE("vclx50.bpi");

Also, never choose a package filename equal to any of the component filenames used.

When using RowSelect, the first cell of the row is not highlighted as the other cells.

This can be easily solved by setting the option goDrawFocusSelect to true in the Options property.

Use a different inplace editor color than the cell color

Normally, the inplace edit control gets the same color as the cell color. Sometimes this behaviour is
not wanted, especially when the cell that is edited must be highlighted. This can be down in the
following way :

procedure TForml.FormCreate (Sender: TObject) ;
begin
AdvStringGridl.Color := clSilver;

end;

procedure TForml.AdvStringGridlGetCellColor (Sender: TObject; ARow,
ACol: Integer; AState: TGridDrawState; ABrush: TBrush; AFont: TFont);

begin
if (acol = AdvStringGridl.Col) and
(arow = AdvStringGridl.Row) then
begin
if Assigned (AdvStringGridl.NormalEdit) then
if (AdvStringGridl.NormalkEdit.Visible) then
ABrush.Color := clWhite;
end;
end;

Still using the 3D style inplace combobox editor
Use following code in the OnGetCellEditor :

grid.ComboBox.Flat := false;

| use OnGetEditorType to specify a checkbox but it only displays when editing

Use a permanently visible checkbox that can be added with the AddCheckBox method

155 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

| use row selection, but the first column has a different color

Set goDrawFocusSelected = true in the Options property

Why do rotated fonts do not print correct ?

Toggle the value of the public property PrinterDriverFix: Boolean

| want to use rotated font but the font does not show rotated

Make sure to use a truetype font. Only truetype font can be rotated.

Why do my printouts do not have colors or fonts set as displayed ?

Assign the OnGetCellColor event to the OnGetCellPrintColor event as well.

Copy and paste does not seem to work ?

Make sure that Navigation.AllowClipboardShortCuts is true and the grid is either editable or
Navigation.AllowClipboardAlways is true.

| want to select multiple rows with Ctrl - mouseclick and Shift - mouse click

In the Options property set goRowSelect = true and set MouseActions.DisjunctRowSelect = true. The
desired selection capabilities are enabled now.

How can the copyright notice be removed from the grid ?

The registered version of TAdvStringGrid does not show this copyright notice.

I am not sure if the latest version of TAdvStringGrid is installed. How can | check this ?

At design time, right click on the grid and select About. At runtime, show the version with :
ShowMessage(Grid.GetVersionString);

When | try to install the trial version of TAdvStringGrid in a trial version of Delphi or C++Builder,
it asks for ADVGRID.PAS ?

The Delphi or C++Builder trial edition does not allow to install binary component distributions. The
registered source version of TAdvStringGrid will work with the full Delphi or C++Builder versions.

156 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

With the registered version of TAdvStringGrid, do we need to pay additional royalties for
application distribution ?

With license for commercial use of the registered version, no additional royalties need to be paid.

How can | set text in a cell ? How do | programmatically change a column width or row height ?

Setting text in a cell is done with the grid.Cells[col,row]: string propert. Setting the column width is
done with grid.ColWidths[col]: Integer and setting a row height with grid.RowHeights[row]: Integer.
Note that TAdvStringGrid inherits ALL methods and properties of TStringGrid. As such, refer to the
Borland documentation for TStringGrid for help on the basic grid functions.

How can | get the state of a checkbox added with grid.AddCheckBox ?

var
state: Boolean;

grid.GetCheckBoxState (col, row, state) ;

if state then
ShowMessage ('CheckBox is checked")
else
ShowMessage ('CheckBox is not checked');

| get an exception ‘invalid column’ during export to Excel

The maximum number of columns supported in Excel itself is 255. As such, it is not possible to
export more columns than the Excel limit.

| have added a button on the grid with AddButton but the OnButtonClick event is not triggered ?

If you add a button to a non editable cell (or grid without editing enabled) the button is treated as
disabled by default. To override this behaviour, set grid.ControlLook.NoDisabledButtonLook = true

| try to set VAlighment to vtaCenter or vtaBottom but this is not working

By default, wordwrap is enabled in the grid and it is a limitation of the Microsoft text drawing API's
that wordwrapped text is always top aligned. To use the VAlignment capability, set WordWrap =
false

Can | load a gallery file programmatically at runtime ?

Yes, call grid.LoadVisualProps(GalleryFileName);

157 | Page

tmssoftware TADVSTRINGGRID

DEVELOPERS GUIDE

I am having problems with grid.SortByColumn, it is slow or behaves incorrect

SortByColumn is a deprecated method, use grid.QSort instead with settings as defined under
grid.SortSettings

Users of older operating systems have an error message on application startup related to a
missing gdiplus.dll

Either redistribute the Microsoft GDIPLUS.DLL (explained in README.TXT) or remove the gdiplus.dll
dependency by commenting the line {SDEFINE TMSGDIPLUS} in TMSDEFS.INC
All operating systems from Windows XP have GDIPLUS.DLL by default installed.

When exporting to Excel file with the method grid.SaveToXLS() | get the error : "Excel OLE
server not found"

The method grid.SaveToXLS() uses OLE automation to export to Excel file and thus requires Excel to
be installed on the machine. To avoid this requirement, you can use the component
TAdvGridExcellO to export to Excel.

When try to install TAdvStringGrid, | get an error that TAdvStringGrid is compiled with a
different version of PictureContainer

Most likely another TMS component has been installed that is also using the PictureContainer. Due
to strict binary compatibility checks of Delphi & C++Builder, it is causing problems to install
multiple binary distributed components that share a unit. For using the binary versions, the only
workaround is to install the packages alternatingly for evaluation. Registered versions that come
with full source do not have this problem.

When | run my application | get an error "property does not exist”

An older version of ADVGRID.DCU might be in your library path. When upgrading from an older
version, make sure to first open all forms in your application that use the grid, ignore property
errors on opening, save form files and then rebuild your application.

When | try to install the package, it asks for AdvGrid.pas

Make sure the correct version of ADVGRID.DCU and other DCU files are in your library path, that
your library path contains the directory where ADVGRID.DCU is installed and that no other versions
of ADVGRID.DCU are in your library path. Note that the binary version of TAdvStringGrid cannot be
used with Delphi or C++Builder trial versions.

158 | Page

