
GETTING STARTED WITH NEUROPH

by Zoran Sevarac and Marko Koprivica

This guide gives you a brief overview on how to use Neuroph framework version 2.3

CONTENTS

1. What is Neuroph?
2. Whats in Neuroph?
3. Requirements
4. Installation and starting
5. Training neural network with application easyNeurons
6. Creating Neural Networks in Java code with Neuroph
7. Web Links

1. What is Neuroph?
Neuroph is Java framework for neural network development.

2. Whats in Neuroph?
Neuroph consists of the Java library and GUI neural network editor called easyNeurons.
You can experiment with common neural network architectures in easyNeurons, and then use Java library to
create those neural networks in your Java programs.

3. Requirements
In order to use/run Neuroph you just need Java VM 1.6 installed on your computer. Everything else is
provided in downloaded package.

4. Installation and Starting
Neuroph does not need any specific installation procedure. Just unpack downloaded neuroph_xxx.zip where
you want and use it.

After unpacking you run demo application by left clicking on easyNeurons.jar
(if .jar extension is not associated with Java you can right the easyNeurons.jar
click then and select: Open With>Java (TM) Open Platform SE binary)

You can also start demo application from command line by typing:

java –jar easyNeurons.jar

5. Training neural network with easyNeurons application

Now we’ll explain how to use application easyNeurons to create neural networks. There are 5 steps for
training NN, and they will be described with example Perceptron neural network for logical OR function (V).

To create and train neural network with easyNeurons do the following:

1. Choose NN architecture (in main manu choose Networks>Perceptron)

2. Enter architecture specific parameters (eg. num of neurons)

3. Create training set
4. Set training parametars and start training

5. Test network

Step 1. To create Perceptron network, in main menu click Networks > Perceptron

Step 2. Enter number of neurons in input and output layer, and click Create button.

This will create the Perceptron neural network with two neurons in input, and one in output layer.
By default, all neurons will have Step transfer functions.

Now we shall train this simple network to learn logical OR function. First we have to create the
training set according to OR truth table.

Step 3. In main menu click Training > New Training Set to open training set training set wizard

Enter training set name, number of inputs, number outputs as shown on picture below and click
Create button.

Then create training set by entering training elements as input and desired output values of
neurons in input and output layer. Use Add row button to add new elements, and click OK button
when finished.

Step 4. To start network training procedure, in network window select training set from drop down
list and click Train button.

In Set Learning parameters dialog use default learning parameters, and just click the Train
button.

When the Total Net Error is zero, the training is complete.

Step 5. After the training is complete, you can test network by using Set Input button. This opens
Set Network Input dialog in which you can enter input values for network separated with
whitespace.

6. Creating Neural Networks in Java code with Neuroph

This is the same example as in previous chapter, but now in Java code. Here is how to create,
train and save Perceptron neural network with Neuroph:

// create new perceptron network
NeuralNetwork neuralNetwork = new Perceptron(2, 1,
TransferFunction.STEP);

// create training set
TrainingSet trainingSet = new TrainingSet();

// add training data to training set (logical OR function)
trainingSet.addElement(new SupervisedTrainingElement(

new double[]{0, 0}, new double[]{0}));
trainingSet.addElement(new SupervisedTrainingElement(

new double[]{0, 1}, new double[]{1}));
trainingSet.addElement(new SupervisedTrainingElement(

new double[]{1, 0}, new double[]{1}));
trainingSet.addElement(new SupervisedTrainingElement(

new double[]{1, 1}, new double[]{1}));
// learn the training set
neuralNetwork.learnInThisThread(trainingSet);

// save the trained network into file
neuralNetwork.save(“or_perceptron.nnet”);

The following example shows how to use saved network.

This example show the basic usage of neural network created with Neuroph.

To be able to use this in your programs, you must provide a reference to Neuroph Library
neuroph.jar in your project (in NetBeans right click project, then Properties > Libraries > Add
JAR/Folder, and choose neuroph.jar). Also you must import the corresponding classes/packages,
like org.neuroph.core, org.neuroph.core.learning and org.neuroph.nnet.

For more examples see org.neuroph.samples package and Help in easyNeurons.

List of all supported NN architectures, is available in Neuroph API documentation (see
org.neuroph.nnet package).

7. Web Links

http://neuroph.sourceforge.net Official Neuroph site
http://en.wikipedia.org/wiki/Neuroph Neuroph on Wikipedia
http://games.slashdot.org/article.pl?sid=09/05/14/0447244 Interesting Slashdot article
http://netbeans.dzone.com/articles/neurophmdashsmart-java-apps Neuroph interview on DZone
http://www.learnartificialneuralnetworks.com Neural network tutorials

Some neural network related articles on wikipedia:

http://en.wikipedia.org/wiki/Artificial_neuron
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/ADALINE
http://en.wikipedia.org/wiki/Perceptron
http://en.wikipedia.org/wiki/Multilayer_perceptron
http://en.wikipedia.org/wiki/Backpropagation
http://en.wikipedia.org/wiki/Hopfield_net
http://en.wikipedia.org/wiki/Kohonen

For more usefull links see: http://neuroph.sourceforge.net/links.html

// load the saved network
NeuralNetwork neuralNetwork = NeuralNetwork.load(“or_perceptron.nnet”);

// set network input
neuralNetwork.setInput(1, 1);

// calculate network
neuralNetwork.calculate();

// get network output
Vector <Double> networkOutput = neuralNetwork.getOutput();

