

athenaCL Tutorial Manual

Second Edition, Version 1.4.8

Christopher Ariza

athenaCL Tutorial Manual: Second Edition, Version 1.4.8
by Christopher Ariza

athenaCL 1.4.8 Edition
Published 16 April 2008
Copyright © 2001-2008 Christopher Ariza

athenaCL is free software, distributed under the GNU General Public License.

Apple, Macintosh, Mac OS, and QuickTime are trademarks or registered trademarks of Apple Computer, Inc. Finale is a
trademark of MakeMusic! Inc. Java is a trademark of Sun Microsystems. Linux is a trademark of Linus Torvalds. Max/MSP is a
trademark of Cycling '74. Microsoft Windows and Visual Basic are trademarks or registered trademarks of Microsoft, Inc. PDF
and PostScript are trademarks of Adobe, Inc. Sibelius is a trademark of Sibelius Software Ltd. SourceForge.net is a trademark
of VA Software Corporation. UNIX is a trademark of The Open Group.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details. http://www.fsf.org/copyleft/gpl.html

 iii

Table of Contents
Preface ... xiii

1. Overview of the athenaCL System.. xiii
2. About the Tutorial Manual ...xiv
3. Conventions Used in This Manual ..xiv
4. Production of This Manual...xiv

1. Tutorial 1: The Interactive Command Line Interface ... 1
1.1. Starting the athenaCL Interpreter ... 1
1.2. Introduction to Commands.. 1
1.3. Viewing Command Names .. 2
1.4. Executing Commands ... 3
1.5. Getting Help for Commands ... 4
1.6. Configuring the User Environment .. 6

2. Tutorial 2: AthenaObjects and EventModes...9
2.1. Introduction to AthenaObjects ... 9
2.2. File Dialogs in athenaCL .. 9
2.3. Loading and Removing an AthenaObject.. 9
2.4. EventModes and EventOutputs..11
2.5. Creating an EventList..13
2.6. Configuring and Using Csound ...14
2.7. Saving and Merging AthenaObjects..16

3. Tutorial 3: Creating and Editing Paths ... 18
3.1. Introduction to Paths ..18
3.2. Creating, Selecting, and Viewing PathInstances..18
3.3. Copying and Removing PathInstances...21
3.4. Editing PathInstances..22

4. Tutorial 4: PathVoices and PathSets ...26
4.1. PathVoices and voiceType ...26
4.2. Creating, Selecting, and Viewing PathVoices ..26
4.3. Copying and Removing PathVoices ...31
4.4. Editing PathVoices ..32
4.5. Analyzing and Comparing PathVoices ...33
4.6. Viewing and Selecting SetMeasures ..36
4.7. Analyzing and Comparing PathSets..37

5. Tutorial 5: Creating and Editing Textures ..39
5.1. Introduction to Textures and ParameterObjects ..39
5.2. Introduction Instrument Models...40
5.3. Selecting and Viewing TextureModules ...42
5.4. Creating, Selecting, and Viewing TextureInstances..44
5.5. Copying and Removing Texture Instances ..49
5.6. Editing TextureInstance Attributes...50
5.7. Muting Textures ...51
5.8. Viewing and Searching ParameterObjects ...52
5.9. Editing ParameterObjects...56

 iv

5.10. Editing Rhythm ParameterObjects ...58
5.11. Editing Instruments and Altering EventMode ...60
5.12. Displaying Texture Parameter Values...63

6. Tutorial 6: Textures and Paths ..65
6.1. Path Linking and Pitch Formation Redundancy...65
6.2. Creating a Path with a Duration Fraction ..65
6.3. Setting EventMode and Creating a Texture ..67
6.4. PitchMode and PolyMode ..68
6.5. Editing Local Octave...70
6.6. Editing Local Field and Temperament...71

7. Tutorial 7: Textures and Clones ..73
7.1. Introduction to Clones..73
7.2. Creating and Editing Clones ..73

8. Tutorial 8: Tools for Pitch Analysis ...78
8.1. Inspecting the Set Class Library ..78
8.2. Searching the Set Class Library for Names, Z-relations, and Super-Sets................................80
8.3. Comparing and Searching Similarity Measures ...82

9. Tutorial 9: Automating and Scripting athenaCL...86
9.1. The athenacl Command-Line Utility ..86
9.2. Creating an athenaCL Interpreter within Python ...88
9.3. Creating athenaCL Generator ParameterObjects within Python...88

A. Installation Instructions (readme.txt)...90
B. Command Reference ..95

B.1. AthenaHistory Commands ..95
B.2. AthenaObject Commands ...95
B.3. AthenaPreferences Commands...96
B.4. AthenaScript Commands ...98
B.5. AthenaUtility Commands ..98
B.6. CsoundPreferences Commands..100
B.7. EventList Commands...100
B.8. EventMode Commands ...101
B.9. EventOutput Commands...102
B.10. MapClass Commands ...102
B.11. PathInstance Commands ...103
B.12. PathSet Commands...105
B.13. PathVoice Commands..106
B.14. SetClass Commands..107
B.15. SetMeasure Commands..109
B.16. TextureClone Commands..109
B.17. TextureEnsemble Commands...111
B.18. TextureInstance Commands ...111
B.19. TextureModule Commands...113
B.20. TextureParameter Commands ..114
B.21. TextureTemperament Commands ...115
B.22. Other Commands ...115

 v

C. ParameterObject Reference and Examples...117
C.1. Generator ParameterObjects...117
C.2. Rhythm ParameterObjects...187
C.3. Filter ParameterObjects ...200
C.4. TextureStatic ParameterObjects ...212
C.5. CloneStatic ParameterObjects...217

D. Temperament and TextureModule Reference... 219
D.1. Temperaments...219
D.2. TextureModules ..220

E. OutputFormat and OutputEngine Reference .. 223
E.1. OutputFormats..223
E.2. OutputEngines ..224

F. Frequently Asked Questions... 226
G. Number Sequences in Sets and Maps .. 229

G.1. The Set Class Library ...229
G.2. The Map Class Library...230

References.. 231

 vi

List of Examples
1-1. Initialization information... 1
1-2. Listing all commands ... 2
1-3. Entering a command.. 3
1-4. Entering a command with an argument.. 4
1-5. Displaying a command listing... 4
1-6. Using the help command... 5
1-7. Accessing additional help topics... 6
1-8. Toggling the athenaCL cursor tool with APcurs ... 7
1-9. Setting the scratch directory with APdir ... 7
1-10. Creating a MIDI file with SCh ... 7
1-11. Setting the active graphics format with APgfx .. 8
1-12. Producing a graphical diagram with MCnet ... 8
2-1. Changing the file dialog style with APdlg ... 9
2-2. Loading an AthenaObject with text-based file selection..10
2-3. Listing TextureInstances with Tils ...10
2-4. Reinitializing the AthenaObject with AOrm..11
2-5. Loading an AthenaObject from the command-line..11
2-6. Viewing EventMode and EventOutputs ..12
2-7. Adding and Removing EventOutputs...12
2-8. Creating a new EventList with Eln..13
2-9. Opening an EventList with Elh ...13
2-10. Creating a new EventList with Eln and command-line arguments..14
2-11. Changing the Csound audio file format with CPff ...15
2-12. Rendering a Csound score ..15
2-13. Opening Csound-generated audio files with ELh...15
2-14. Merging AthenaObjects with AOmg ..16
2-15. Listing TextureInstances ...16
2-16. Creating a new AthenaObject with AOw...17
3-1. Creating a new PathInstance with PIn ..19
3-2. Viewing a Path with PIv ..19
3-3. Creating a MIDI file with PIh ..20
3-4. Creating a Path with Forte numbers..20
3-5. Displaying a Path ..20
3-6. Listing Paths ..20
3-7. Selecting Paths...21
3-8. Selecting a Path with an argument ...21
3-9. Copying a Path with PIcp..21
3-10. Removing a Path with PIrm ...22
3-11. Creating a retrograde of a Path with PIret..22
3-12. Creating a rotation of a Path with PIrot ...22
3-13. Creating a slice of a Path with PIslc ..23
3-14. Transposing a set within a Path..23
3-15. Replacing a Multiset with a new Multiset ...24
3-16. Replacing a set with a Forte name ...24
4-1. Creating a Path with equal-sized sets...26

 vii

4-2. Viewing the active PathVoice group..27
4-3. Viewing detailed map analysis data ..28
4-4. Creating a new PathVoice group..29
4-5. Viewing a PathVoice ..29
4-6. Selecting the active PathVoice ..30
4-7. Viewing PathVoices when viewing a Path..30
4-8. Automatically filling a PathVoice group with a common ranking. ...30
4-9. Creating an optimized path and PathVoice group ..31
4-10. Copying a PathVoice..31
4-11. Removing a PathVoice group...32
4-12. Editing a map in a PathVoice group ...32
4-13. Viewing a PathVoice group ..33
4-14. Detailed map data of a PathVoice group..33
4-15. Viewing sorted map data between two sets..34
4-16. Viewing fewer than the full range of map analysis data ...35
4-17. Viewing sorted map analysis data between any pair of sets...35
4-18. Displaying a list of SetMeasures ...36
4-19. Comparing adjacent sets in a Path ...37
4-20. Examining interval class vectors ..37
4-21. Comparing one set to all sets in a Path ...38
5-1. Listing available Instruments with EMi ..40
5-2. Examining additional Instruments with EMi...42
5-3. Listing TextureModules with TMls..43
5-4. Selecting the active TextureModule with TMo..43
5-5. Viewing details of the active TextureModule...44
5-6. Creating a new TextureInstance with TIn ..45
5-7. Creating a new EventList with ELn ..45
5-8. Viewing a TextureInstance..45
5-9. Creating and viewing a TextureInstance ...47
5-10. Listing all TextureInstances ..48
5-11. Selecting the active TextureInstance ...48
5-12. Viewing parameter values for all Textures ...48
5-13. Copying a TextureInstance ...49
5-14. Removing a TextureInstance ..49
5-15. Editing a TextureInstance ...50
5-16. Editing a single parameter of all Textures with TEe ..51
5-17. Generating a graphical display of Texture position with TEmap...51
5-18. Muting a Texture with TImute...52
5-19. Removing mute status with TImute ..52
5-20. Displaying all ParameterObjects with TPls ..53
5-21. Viewing ParameterObject reference information..55
5-22. ParameterObject Map display with TPmap ...55
5-23. ParameterObject Map display with TPmap ...56
5-24. Editing the panning of a TextureInstance ..56
5-25. Editing the panning of a TextureInstance ..57
5-26. View Pulse and Rhythm help..58
5-27. Editing Rhythm ParameterObjects with TIe ...59
5-28. Editing Rhythm ParameterObjects with TIe ...59

 viii

5-29. Editing BPM with TEe..60
5-30. Changing EventMode and editing Texture instrument..61
5-31. Examining Texture documentation with TIdoc..63
5-32. Creating a new EventList with ELn ..63
5-33. Viewing a Texture with TImap ..64
6-1. Creating a Path with PIn ...65
6-2. Altering a Path's durFraction with PIdf ..66
6-3. Creating a Texture with TM LiteralVertical ...67
6-4. Editing a Texture ..68
6-5. Editing PitchMode of a TextureInstance..69
6-6. Editing Local Octave ...70
6-7. Editing TextureStatic..71
6-8. Listing all TextureTemperaments ..72
6-9. Selecting Texture Temperament with TTo ..72
7-1. Creating a Texture ..73
7-2. Creating and Viewing a Clone with TCn and TCv..74
7-3. Editing a Clone with TCe..75
7-4. Listing and Selecting Clones with TCls and TCo ..76
7-5. Creating and Editing Clones ...76
7-6. Viewing Textures and Clones with TEmap..77
8-1. Viewing a set by pitch name or Forte name...78
8-2. Switching SetClass mode from Tn/I to Tn..79
8-3. Viewing Tn subset data..79
8-4. Searching for a set by name ..80
8-5. Viewing all z-related pairs..80
8-6. Viewing superset data...81
8-7. Comparing two sets with all set class similarity measures..82
8-8. Listing and selecting set class similarity measures ...83
8-9. Searching set classes by similarity range..84
9-1. Calling a command with arguments from the UNIX shell ..86
9-2. Creating and editing Textures from the UNIX shell ..87
9-3. An athenaCL Interpreter in Python...88
9-4. Creating a Generator ParameterObject...88
C-1. accumulator Demonstration 1 ...117
C-2. accumulator Demonstration 2 ...117
C-3. basketGen Demonstration 1 ..118
C-4. basketGen Demonstration 2 ..118
C-5. basketGen Demonstration 3 ..119
C-6. breakGraphFlat Demonstration 1...119
C-7. breakGraphHalfCosine Demonstration 1..120
C-8. breakGraphLinear Demonstration 1 ..121
C-9. breakGraphPower Demonstration 1 ..121
C-10. breakPointFlat Demonstration 1...122
C-11. breakPointFlat Demonstration 2...122
C-12. breakPointFlat Demonstration 3...122
C-13. breakPointHalfCosine Demonstration 1 ...123
C-14. breakPointHalfCosine Demonstration 2 ...123
C-15. breakPointHalfCosine Demonstration 3 ...124

 ix

C-16. breakPointLinear Demonstration 1 ..124
C-17. breakPointLinear Demonstration 2 ..124
C-18. breakPointLinear Demonstration 3 ..125
C-19. breakPointPower Demonstration 1 ..125
C-20. breakPointPower Demonstration 2 ..126
C-21. breakPointPower Demonstration 3 ..126
C-22. basketSelect Demonstration 1 ...126
C-23. constant Demonstration 1..127
C-24. cyclicGen Demonstration 1 ...128
C-25. cyclicGen Demonstration 2 ...128
C-26. caList Demonstration 1 ..129
C-27. caList Demonstration 2 ..129
C-28. caValue Demonstration 1...130
C-29. caValue Demonstration 2...131
C-30. caValue Demonstration 3...131
C-31. envelopeGeneratorAdsr Demonstration 1 ..132
C-32. envelopeGeneratorAdsr Demonstration 2 ..132
C-33. envelopeGeneratorAdsr Demonstration 3 ..133
C-34. envelopeGeneratorTrapezoid Demonstration 1...133
C-35. envelopeGeneratorTrapezoid Demonstration 2...134
C-36. envelopeGeneratorTrapezoid Demonstration 3...134
C-37. envelopeGeneratorUnit Demonstration 1...135
C-38. envelopeGeneratorUnit Demonstration 2...135
C-39. funnelBinary Demonstration 1 ..136
C-40. funnelBinary Demonstration 2 ..136
C-41. fibonacciSeries Demonstration 1 ..137
C-42. fibonacciSeries Demonstration 2 ..137
C-43. fibonacciSeries Demonstration 3 ..137
C-44. henonBasket Demonstration 1..138
C-45. henonBasket Demonstration 2..138
C-46. henonBasket Demonstration 3..138
C-47. iterateCross Demonstration 1..139
C-48. iterateCross Demonstration 2..139
C-49. iterateGroup Demonstration 1 ..140
C-50. iterateGroup Demonstration 2 ..140
C-51. iterateHold Demonstration 1...141
C-52. iterateHold Demonstration 2...141
C-53. iterateSelect Demonstration 1..142
C-54. iterateSelect Demonstration 2..142
C-55. iterateWindow Demonstration 1...143
C-56. iterateWindow Demonstration 2...143
C-57. lorenzBasket Demonstration 1 ..144
C-58. lorenzBasket Demonstration 2 ..145
C-59. logisticMap Demonstration 1 ..145
C-60. logisticMap Demonstration 2 ..146
C-61. logisticMap Demonstration 3 ..146
C-62. listPrime Demonstration 1 ...147
C-63. listPrime Demonstration 2 ...147

 x

C-64. listPrime Demonstration 3 ...147
C-65. mask Demonstration 1..148
C-66. mask Demonstration 2..148
C-67. mask Demonstration 3..148
C-68. markovGeneratorAnalysis Demonstration 1 ..149
C-69. markovGeneratorAnalysis Demonstration 2 ..149
C-70. markovGeneratorAnalysis Demonstration 3 ..150
C-71. maskReject Demonstration 1...150
C-72. maskReject Demonstration 2...151
C-73. maskReject Demonstration 3...151
C-74. maskScale Demonstration 1...152
C-75. markovValue Demonstration 1 ...152
C-76. markovValue Demonstration 2 ...153
C-77. noise Demonstration 1..153
C-78. noise Demonstration 2..154
C-79. noise Demonstration 3..154
C-80. noise Demonstration 4..154
C-81. operatorAdd Demonstration 1 ..155
C-82. operatorCongruence Demonstration 1 ..155
C-83. operatorDivide Demonstration 1..156
C-84. operatorMultiply Demonstration 1 ...156
C-85. oneOver Demonstration 1 ...157
C-86. operatorPower Demonstration 1 ..157
C-87. operatorSubtract Demonstration 1 ...158
C-88. quantize Demonstration 1..159
C-89. quantize Demonstration 2..159
C-90. quantize Demonstration 3..159
C-91. randomBeta Demonstration 1 ...160
C-92. randomBeta Demonstration 2 ...160
C-93. randomBilateralExponential Demonstration 1 ...161
C-94. randomBilateralExponential Demonstration 2 ...161
C-95. randomBilateralExponential Demonstration 3 ...161
C-96. randomCauchy Demonstration 1..162
C-97. randomCauchy Demonstration 2..162
C-98. randomCauchy Demonstration 3..162
C-99. randomExponential Demonstration 1 ...163
C-100. randomExponential Demonstration 2 ...163
C-101. randomExponential Demonstration 3 ...163
C-102. randomGauss Demonstration 1..164
C-103. randomGauss Demonstration 2..164
C-104. randomInverseExponential Demonstration 1 ..165
C-105. randomInverseExponential Demonstration 2 ..165
C-106. randomInverseExponential Demonstration 3 ..165
C-107. randomInverseLinear Demonstration 1 ..166
C-108. randomInverseLinear Demonstration 2 ..166
C-109. randomInverseTriangular Demonstration 1 ...167
C-110. randomInverseTriangular Demonstration 2 ...167
C-111. randomLinear Demonstration 1..167

 xi

C-112. randomLinear Demonstration 2..168
C-113. randomTriangular Demonstration 1...168
C-114. randomTriangular Demonstration 2...169
C-115. randomUniform Demonstration 1 ...169
C-116. randomUniform Demonstration 2 ...169
C-117. randomWeibull Demonstration 1 ...170
C-118. randomWeibull Demonstration 2 ...170
C-119. randomWeibull Demonstration 3 ...171
C-120. sampleAndHold Demonstration 1..171
C-121. sampleAndHold Demonstration 2..172
C-122. sampleAndHold Demonstration 3..172
C-123. sieveFunnel Demonstration 1..173
C-124. sieveFunnel Demonstration 2..173
C-125. sieveFunnel Demonstration 3..173
C-126. sieveList Demonstration 1 ...174
C-127. valuePrime Demonstration 1 ...175
C-128. valuePrime Demonstration 2 ...175
C-129. valueSieve Demonstration 1 ..176
C-130. valueSieve Demonstration 2 ..176
C-131. valueSieve Demonstration 3 ..176
C-132. valueSieve Demonstration 4 ..177
C-133. waveCosine Demonstration 1..177
C-134. waveCosine Demonstration 2..178
C-135. waveCosine Demonstration 3..178
C-136. wavePulse Demonstration 1 ..179
C-137. wavePulse Demonstration 2 ..179
C-138. wavePulse Demonstration 3 ..179
C-139. wavePowerDown Demonstration 1 ...180
C-140. wavePowerDown Demonstration 2 ...180
C-141. wavePowerDown Demonstration 3 ...180
C-142. wavePowerUp Demonstration 1...181
C-143. wavePowerUp Demonstration 2...181
C-144. wavePowerUp Demonstration 3...182
C-145. waveSine Demonstration 1 ..182
C-146. waveSine Demonstration 2 ..183
C-147. waveSine Demonstration 3 ..183
C-148. waveSine Demonstration 4 ..183
C-149. waveSawDown Demonstration 1 ...184
C-150. waveSawDown Demonstration 2 ...184
C-151. waveSawDown Demonstration 3 ...184
C-152. waveSawUp Demonstration 1 ...185
C-153. waveSawUp Demonstration 2 ...185
C-154. waveSawUp Demonstration 3 ...186
C-155. waveTriangle Demonstration 1 ...186
C-156. waveTriangle Demonstration 2 ...187
C-157. waveTriangle Demonstration 3 ...187
C-158. convertSecond Demonstration 1 ..188
C-159. convertSecondTriple Demonstration 1..189

 xii

C-160. gaRhythm Demonstration 1...190
C-161. iterateRhythmGroup Demonstration 1..191
C-162. iterateRhythmHold Demonstration 1 ..192
C-163. iterateRhythmWindow Demonstration 1 ..193
C-164. loop Demonstration 1...194
C-165. markovPulse Demonstration 1..195
C-166. markovRhythmAnalysis Demonstration 1 ..196
C-167. pulseSieve Demonstration 1 ..197
C-168. pulseSieve Demonstration 2 ..197
C-169. pulseTriple Demonstration 1...198
C-170. pulseTriple Demonstration 2...199
C-171. rhythmSieve Demonstration 1...200
C-172. bypass Demonstration 1...201
C-173. filterAdd Demonstration 1...201
C-174. filterDivide Demonstration 1 ..202
C-175. filterDivideAnchor Demonstration 1...203
C-176. filterFunnelBinary Demonstration 1 ..204
C-177. filterFunnelBinary Demonstration 2 ..204
C-178. filterMultiply Demonstration 1..205
C-179. filterMultiplyAnchor Demonstration 1 ..206
C-180. filterPower Demonstration 1 ...206
C-181. filterQuantize Demonstration 1 ..207
C-182. filterQuantize Demonstration 2 ..208
C-183. maskFilter Demonstration 1 ..208
C-184. maskScaleFilter Demonstration 1 ...209
C-185. orderBackward Demonstration 1..210
C-186. orderRotate Demonstration 1..210
C-187. pipeLine Demonstration 1 ...211
C-188. replace Demonstration 1 ..212
G-1. Number of TnI Set Classes..229
G-2. Number of Tn Set Classes ...229
G-3. Number of Subsets ...230
G-4. Number of Map Classes...230

 xiii

Preface

1. Overview of the athenaCL System

The athenaCL system is a software tool for creating musical structures. Music is rendered as a
polyphonic event list, or an EventSequence object. This EventSequence can be converted into
diverse forms, or OutputFormats, including scores for the Csound synthesis language, Musical
Instrument Digital Interface (MIDI) files, and other specialized formats. Within athenaCL,
Orchestra and Instrument models provide control of and integration with diverse OutputFormats.
Orchestra models may include complete specification, at the code level, of external sound sources
that are created in the process of OutputFormat generation.

The athenaCL system features specialized objects for creating and manipulating pitch structures,
including the Pitch, the Multiset (a collection of Pitches), and the Path (a collection of Multisets).
Paths define reusable pitch groups. When used as a compositional resource, a Path is interpreted by
a Texture object (described below). In addition to tools for storing and editing Paths, athenaCL
provides resources for analyzing Paths as static sets (set classes) and as transformations (voice
leadings). These analysis tools borrow nomenclature and metrics from post-tonal music theory.

The athenaCL system features three levels of algorithmic design. The first two levels are provided by
the ParameterObject and the Texture. The ParameterObject is a model of a low-level
one-dimensional parameter generator and transformer. The Texture is a model of a
multi-dimensional generative musical part. A Texture is controlled and configured by numerous
embedded ParameterObjects. Each ParameterObject is assigned to either event parameters, such as
amplitude and rhythm, or Texture configuration parameters. The Texture interprets
ParameterObject values to create EventSequences. The number of ParameterObjects in a Texture,
as well as their function and interaction, is determined by the Texture's parent type (TextureModule)
and Instrument model. Each Texture is an instance of a TextureModule. TextureModules encode
diverse approaches to multi-dimensional algorithmic generation. The TextureModule manages the
deployment and interaction of lower level ParameterObjects, as well as linear or non-linear event
generation. Specialized TextureModules may be designed to create a wide variety of musical
structures.

The third layer of algorithmic design is provided by the Clone, a model of the multi-dimensional
transformative part. The Clone transforms EventSequences generated by a Texture. Similar to
Textures, Clones are controlled and configured by numerous embedded ParameterObjects.

Each Texture and Clone creates a collection of Events. Each Event is a rich data representation that
includes detailed timing, pitch, rhythm, and parameter data. Events are stored in EventSequence
objects. The collection all Texture and Clone EventSequences is the complete output of athenaCL.
These EventSequences are transformed into various OutputFormats for compositional deployment.

The athenaCL system has been under development since June 2000. The software is cross platform,
developed under an open-source license, and programmed in the Python language. An interactive
command-line interface is the primary user environment of athenaCL, though the complete
functionality of the system is alternatively available as a scriptable batch processor or as a
programmable Python extension library.

 Preface

 xiv

2. About the Tutorial Manual

This document consists of a number of different tutorials, each focusing on different aspects of the
athenaCL system from the perspective of the user. Following the tutorials are appendices, providing
documentation useful for reference. Much of this reference documentation is also available from
within athenaCL. This document does not offer a complete description of the history, context, and
internal structure of the athenaCL system; such a description, including comparative analysis to
related historical and contemporary systems and detailed explanation of object models and
interactions, is provided in the text An Open Design for Computer-Aided Algorithmic Music Composition:
athenaCL (Ariza 2005a). Numerous additional articles are available that explore aspects of the
athenaCL system in detail (Ariza 2002, 2003, 2004, 2005b, 2006, 2007a, 2007b). Users interested in
code-level work, either modifying or extending the athenaCL system, should consult these additional
resources.

The tutorials need not be done in any particular order, but should be chosen depending on interests.
All users should read Chapter 1 and Chapter 2 to gain familiarity with the interface and basic
athenaCL concepts. Users interested in composing music with athenaCL should then read Chapter
5, Chapter 6, and Chapter 7. Returning to Chapter 3 may be necessary for more details on Paths,
and advanced users should read Chapter 9. Users interested in tools for set-theory, voice-leading, or
pitch analysis should focus on Chapter 3, Chapter 4, and Chapter 8.

3. Conventions Used in This Manual

The following typographical conventions are used throughout this book:

Constant width

Used for athenaCL text output as transcribed in examples. This is what the program displays to the
user.

Constant width bold

Used for user text input as transcribed in examples. This is what the user enters into the program.

4. Production of This Manual

The first edition of the athenaCL Tutorial Manual was released in August of 2001 and covered
athenaCL versions 1.0 to 1.3. The second edition was released in June 2005 and covers athenaCL
versions 1.4 and beyond.

This manual is constructed and maintained with the help of various open-source tools: DocBook
(http://www.docbook.org), the Modular DocBook Stylesheet distribution
(http://docbook.sourceforge.net/projects/dsssl/), OpenJade (http://openjade.sourceforge.net/),
Python (http://www.python.org/), and ImageMagick (http://www.imagemagick.org/).

 1

Chapter 1. Tutorial 1: The Interactive Command Line Interface

This tutorial provides essential information and examples for using athenaCL's interactive
command-line Interpreter. This material is essential for understanding basic athenaCL operation and
how to obtain help within the program.

1.1. Starting the athenaCL Interpreter

Depending on your platform, there are a number of different ways to launch the athenaCL program
and start the athenaCL Interpreter. For all platforms, using athenaCL requires installing (or finding)
Python 2.3 (or better) on your system. Many advanced operating systems (UNIX-based operating
systems including GNU/Linux and MacOS X) ship with Python installed. Earlier versions of
Python (down to 2.2) may work on some platforms; 2.3, however, is recommended. Python is a free,
open-source programming language available on every platform.

For complete instructions on installing and launching athenaCL in each platform, please see the file
"README.txt" included in the athenaCL distribution and in Appendix A.

Whenever new Python ".py" source files are run, the Python interpreter creates ".pyc" or ".pyo" files
for each source file. These files are compiled-byte code. The first time athenaCL is launched, many
of these files are created. After this initial launch, users will notice a significant acceleration in
application startup time. After launching athenaCL, the user is presented with a text-based display in
a terminal window. The user is presented with the following initialization information:

Example 1-1. Initialization information

athenaCL 1.4.8 (on darwin via terminal threading off)
Enter "cmd" to see all commands. For help enter "?".
Enter "c" for copyright, "w" for warranty, "r" for credits.

[PI()TI()] ::

When starting up the Interpreter, athenaCL looks in the athenaCL directory for the "libATH"
folder, and then various directories within the "libATH" folder. These directories contain essential
files and must be present for the program to run. The athenaCL prompt "::" is preceded by
information concerning the AthenaObject. This will be explained in greater detail below.

1.2. Introduction to Commands

When using athenaCL, the user enters commands to get things done. athenaCL commands are
organized by prefixes, two-letter codes that designate what the command operates upon. Prefixes
are always displayed as capitalized letters, though the user, when entering commands, may use
lower-case letters. Some common prefixes are "PI", for PathInstance, or "TI", for TextureInstance.
What follows the prefix usually resembles UNIX shell commands: "ls" for listing objects, "rm" for
removing objects. For example, the command to list all the available TextureModules is TMls: "TM"
for TextureModule, "ls" for list. When no common UNIX command-abbreviation is available,

 Tutorial 1: The Interactive Command Line Interface

 2

intuitive short abbreviations are used. For example, the command to create the retrograde of a
PathInstance is PIret: "PI" for PathInstance, "ret" for retrograde.

The division of commands into prefixes demonstrates, in part, the large-scale design of the
AthenaObject. The AthenaObject consists of PathInstances and TextureInstances. PathInstances
are objects that define pitch materials. TextureInstances define algorithmic music layers. Users can
create, copy, edit and store collections of Paths and Textures within the AthenaObject. All Path
related commands start with a "P", like PathInstance ("PI"), and PathVoice ("PV"); all Texture
related commands start with a "T", like TextureTemperament ("TT"), TextureClone("TC") and
TextureModule ("TM").

In addition to the commands available for working with Paths and Textures, there are commands
for accessing the SetClass dictionary (prefix "SC") and the MapClass dictionary (prefix "MC").
Creating various event list formats (such as Csound scores and MIDI files) is facilitated with the
EventList commands (prefix "EL"). The complete AthenaObject, with all its Paths and Textures, is
handled with AthenaObject commands (prefix "AO"). These commands are used to save and
control the complete collection of Paths and Textures.

1.3. Viewing Command Names

When starting athenaCL, the user is presented with a prompt (::). To display a listing of all
commands enter "cmd", for command:

Example 1-2. Listing all commands

[PI()TI()] :: cmd
athenaCL Commands:
..
SetClass SCv(view) SCcm(comp) SCf(find)
 SCs(search) SCmode(mode) SCh(hear)
SetMeasure SMls(list) SMo(select)
MapClass MCv(view) MCcm(comp) MCopt(optimum)
 MCgrid(grid) MCnet(network)
..
PathInstance PIn(new) PIcp(copy) PIrm(remove)
 PIo(select) PIv(view) PIe(edit)
 PIdf(duration) PIls(list) PIh(hear)
 PIret(retro) PIrot(rot) PIslc(slice)
 PIopt(optimum)
PathSet PScma(compA) PScmb(compB)
PathVoice PVn(new) PVcp(copy) PVrm(remove)
 PVo(select) PVv(view) PVe(edit)
 PVls(list) PVan(analysis) PVcm(compare)
 PVauto(auto)
..
TextureModule TMo(select) TMv(view) TMls(list)
TextureParameter TPls(list) TPv(select) TPmap(map)
 TPeg(export)
TextureInstance TIn(new) TIcp(copy) TIrm(remove)
 TIo(select) TIv(view) TIe(edit)
 TIls(list) TImode(mode) TImute(mute)
 TIdoc(doc) TImap(map) TImidi(midi)
TextureClone TCn(new) TCcp(copy) TCrm(remove)
 TCo(select) TCv(view) TCe(edit)

 Tutorial 1: The Interactive Command Line Interface

 3

 TCls(list) TCmute(mute) TCmap(map)
TextureTemperament TTls(list) TTo(select)
TextureEnsemble TEv(view) TEe(edit) TEmap(map)
 TEmidi(midi)
..
EventOutput EOls(list) EOo(select) EOrm(remove)
EventMode EMls(list) EMo(select) EMv(view)
 EMi(inst)
EventList ELn(new) ELw(save) ELv(view)
 ELh(hear) ELr(render)
CsoundPreferences CPff(format) CPch(channel) CPauto(auto)
..
AthenaPreferences APcurs(cursor) APdlg(dialogs) APgfx(graphics)
 APdir(directory) APea(external) APr(refresh)
 APwid(width) APcc(custom)
AthenaHistory AHls(list) AHexe(execute)
AthenaUtility AUsys(system) AUdoc(docs) AUup(update)
 AUbeat(beat) AUpc(pitch) AUmg(markov)
 AUma(markov) AUca(automata)
AthenaObject AOw(save) AOl(load) AOmg(merge)
 AOrm(remove)

This display, organized by prefix heading, shows each command followed by a longer description of
the commands name. For example, under the prefix SetClass there are six commands: SCv, SCcm,
SCf, SCs, SCmode, and SCh. These are the commands. The parenthetical entries that follow each
command describe the command in more detail. Thus SCv(view) shows that the command SCv is a
"view" command.

1.4. Executing Commands

To use a command, simply enter its name. The user will be prompted for all additional information.
For example, type "SCv" (or "scv") at the athenaCL prompt:

Example 1-3. Entering a command

[PI()TI()] :: scv
enter a pitch set, sieve, or set-class: C, C#, F
 SC 3-4A as (C4,C#4,F4)? (y, n, or cancel): y
SC(3-4A), Z(none), mode(Tn)
Pitch Space: (C4,C#4,F4)
Pitch Class: (0,1,5)
Normal Form: (0,1,5)
Prime Form: (0,1,5)
Invariance Vector: (1,0,1,0,5,6,5,6)
Interval Class Vector: (1,0,0,1,1,0)
References:
 name incomplete major-seventh chord
Subset Vectors:
3CV(Tn)
 0,0,0,0,0,1,0,0,0,0 - 0,0,0,0,0,0,0,0,0

This command prompts the user for a "pitch set, sieve, or set-class" and then displays the SetClass
dictionary entry for the entered set. A Xenakis sieve (Xenakis 1990, 1992; Ariza 2004, 2005b) can be
entered using a logical string and a pitch range. Set class labels are given using Forte names. The user

 Tutorial 1: The Interactive Command Line Interface

 4

may enter the chord itself as pitch-names (with sharps as "#" and flats as "$") or pitch-classes
(integers that represent the notes of the chromatic scale) (Straus 1990). For instance, the chord
D-major can be represented with the following pitch-name string: (D, F#, A). Or, the same chord
can be represented as a pitch class set: (2,6,9), where 0 is always C, 1=C#, 2=D, …, 10=A#, and
11=B. Calling the SCv command again with this pitch class set gives us the following results:

Example 1-4. Entering a command with an argument

[PI()TI()] :: scv 2,6,9
SC(3-11B), Z(none), mode(Tn)
Pitch Space: (D4,F#4,A4)
Pitch Class: (2,6,9)
Normal Form: (0,4,7)
Prime Form: (0,3,7)
Invariance Vector: (1,0,0,0,5,6,5,5)
Interval Class Vector: (0,0,1,1,1,0)
References:
 name major triad
Subset Vectors:
3CV(Tn)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,1,0

Here the pitch-class set (2,6,9), the chord-type D-major, returns the entry for SetClass 3-11B, the
chord-type of a major triad.

Notice that in the above example the pitch class set argument is entered at the same time as the
command: "SCv 2,6,9". As an interactive command-line program, athenaCL can interactively obtain
arguments from the user, and can, alternatively, accept space-separated arguments following a
command. Command-line arguments allow advanced users ease and speed and, when called from an
external environment (such as a UNIX shell or Python script), permit advanced scripting
automation. All athenaCL commands can function both with arguments and with interactive
prompts. Command-line arguments, however, are never required: if arguments are absent, the user is
prompted for the necessary details.

1.5. Getting Help for Commands

athenaCL provides two ways of helping the user access and learn commands. If the user only
remembers the prefix of a command, this prefix can be entered at the prompt to produce a list of all
commands associated with that prefix:

Example 1-5. Displaying a command listing

[PI()TI()] :: sc
SC (SetClass) commands:
 SCv view
 SCcm comp
 SCf find
 SCs search
 SCmode mode
 SCh hear
command?

 Tutorial 1: The Interactive Command Line Interface

 5

Help information is available for each command and can be accessed from the athenaCL prompt by
typing either "?" or "help" followed by the name of the command. The following example provides
the documentation for the SCv command. Notice that the main documentation is followed by
"usage" documentation, or the format required for providing command-line arguments:

Example 1-6. Using the help command

[PI()TI()] :: help SCv
{topic,documentation}
SCv SCv: SetClass: View: Displays all data in the set class
 dictionary for the user-supplied pitch groups. Users may
 specify pitch groups in a variety of formats. A Forte set
 class number (6-23A), a pitch-class set (4,3,9), a pitch-
 space set (-3, 23.2, 14), standard pitch letter names (A,
 C##, E~, G#), MIDI note numbers (58m, 62m), frequency values
 (222hz, 1403hz), a Xenakis sieve (5&3|11), or an Audacity
 frequency-analysis file (import) all may be provided.
 Pitches may be specified by letter name (psName), pitch
 space (psReal), pitch class, MIDI note number, or frequency.
 Pitch letter names may be specified as follows: a sharp is
 represented as "#"; a flat is represented as "$"; a quarter
 sharp is represented as "~"; multiple sharps, quarter
 sharps, and flats are valid. Octave numbers (where middle-C
 is C4) can be used with pitch letter names to provide
 register. Pitch space values (as well as pitch class) place
 C4 at 0.0. MIDI note numbers place C4 at 60. Numerical
 representations may encode microtones with additional
 decimal places. MIDI note-numbers and frequency values must
 contain the appropriate unit as a string ("m" or "hz").
 Xenakis sieves are entered using logic constructions of
 residual classes. Residual classes are specified by a
 modulus and shift, where modulus 3 at shift 1 is notated
 3@1. Logical operations are notated with "&" (and), "|"
 (or), "^" (symmetric difference), and "-" (complementation).
 Residual classes and logical operators may be nested and
 grouped by use of braces ({}). Complementation can be
 applied to a single residual class or a group of residual
 classes. For example: -{7@0|{-5@2&-4@3}}. When entering a
 sieve as a pitch set, the logic string may be followed by
 two comma-separated pitch notations for register bounds. For
 example "3@2|4, c1, c4" will take the sieve between c1 and
 c4. Audacity frequency-analysis files can be produced with
 the cross-platform open-source audio editor Audacity. In
 Audacity, under menu View, select Plot Spectrum, configure,
 and export. The file must have a .txt extension. To use the
 file-browser, enter "import"; to select the file from the
 prompt, enter the complete file path, optionally followed by
 a comma and the number of ranked pitches to read. For all
 pitch groups the SCv command interprets the values as a set
 class. The Normal Form, Invariance Vector and all N Class
 Vectors (for the active Tn/TnI mode) are displayed. N-Class
 Vectors, when necessary, are displayed in 20 register rows
 divided into two groups of 10 and divided with a dash (-).
 The output of this command is configured by the active
 system Tn/TnI mode; to change the set class Tn/TnI mode
 enter the command "SCmode".
usage: scv set

 Tutorial 1: The Interactive Command Line Interface

 6

The same help command can be used to access information concerning additional topics, notations,
and representations used within athenaCL. For example, information about Markov transition
strings can be accessed with the same help command:

Example 1-7. Accessing additional help topics

[PI()TI()] :: ? markov
{topic,documentation}
Markov Notation Markov transition strings are entered using symbolic
 definitions and incomplete n-order weight specifications.
 The complete transition string consists of two parts: symbol
 definition and weights. Symbols are defined with alphabetic
 variable names, such as "a" or "b"; symbols may be numbers,
 strings, or other objects. Key and value pairs are notated
 as such: name{symbol}. Weights may be give in integers or
 floating point values. All transitions not specified are
 assumed to have equal weights. Weights are specified with
 key and value pairs notated as such: transition{name=weight
 | name=weight}. The ":" character is used as the zero-order
 weight key. Higher order weight keys are specified using the
 defined variable names separated by ":" characters. Weight
 values are given with the variable name followed by an "="
 and the desired weight. Multiple weights are separated by
 the "|" character. All weights not specified, within a
 defined transition, are assumed to be zero. For example, the
 following string defines three variable names for the values
 .2, 5, and 8 and provides a zero order weight for b at 50%,
 a at 25%, and c at 25%: a{.2}b{5}c{8} :{a=1|b=2|c=1}.
 N-order weights can be included in a transition string.
 Thus, the following string adds first and second order
 weights to the same symbol definitions: a{.2}b{5}c{8}
 :{a=1|b=2|c=1} a:{c=2|a=1} c:{b=1} a:a:{a=3|b=9}
 c:b:{a=2|b=7|c=4}. For greater generality, weight keys may
 employ limited single-operator regular expressions within
 transitions. Operators permitted are "*" (to match all
 names), "-" (to not match a single name), and "|" (to match
 any number of names). For example, a:*:{a=3|b=9} will match
 "a" followed by any name; a:-b:{a=3|b=9} will match "a"
 followed by any name that is not "b"; a:b|c:{a=3|b=9} will
 match "a" followed by either "b" or "c".

Throughout this document additional information for the reader may be recommended by
suggesting the use of the help command. For example: (enter "help markov" for more information).

1.6. Configuring the User Environment

athenaCL has many configurable settings that are saved in a preference file and loaded for each
athenaCL session. Some of these settings have default values; others will need to be configured the
first time a command is used.

For example, following the athenaCL prompt ("::") is the the athenaCL "cursor tool." This tool,
providing information on the active Texture and Path, can be customized (with the APcc command)
and turned on or off with the command APcurs, for AthenaPreferences cursor:

 Tutorial 1: The Interactive Command Line Interface

 7

Example 1-8. Toggling the athenaCL cursor tool with APcurs

[PI()TI()] :: apcurs
cursor tool set to off.

:: apcurs
cursor tool set to on.

[PI()TI()] ::

athenaCL writes files. Some of these files are audio formats, some are event list formats (scores,
MIDI files), and some are image files. In most cases, before a file is written, the user will be
prompted for a file path. In some cases, however, athenaCL will write a file in a user specified
"scratch" directory with an automatically-generated file name. This is convenient and fast for some
operations. To set the scratch directory, enter the APdir command, for AthenaPreferences directory.
(Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable directory.)

Example 1-9. Setting the scratch directory with APdir

[PI()TI()] :: apdir
select directory to set: scratch, ssdir, or sadir. (x, ss or sa): x
/Users/ariza/_x/src/athenaCL
..
.cvsignore .DS_Store __init__.py __init__.pyc __init__.pyo
athenacl.py athenacl.pyc athenaObj.py athenaObj.pyc athenaObj.pyo
CVS demo docs libATH setup.py
tools
select a scratch directory:
to change directory enter name, path, or ".."
cancel or select? (c or s): /Volumes/xdisc/_scratch
/Volumes/xdisc/_scratch
..
.DS_Store a.mid
select a scratch directory:
to change directory enter name, path, or ".."
cancel or select? (c or s): s
user scratch directory set to /Volumes/xdisc/_scratch.

The command SCh, for SetClass hear, allows the creation of a MIDI file from a single pitch
specification. In this case, athenaCL writes the MIDI file in the user-specified scratch directory.
After the file is written, athenaCL opens the file with the operating system. Depending on how the
operating system is configured, the MIDI file will open in an appropriate player. The athenaCL
system frequently works in this manner with the operating system and external programs and
resources.

Example 1-10. Creating a MIDI file with SCh

[PI()TI()] :: sch 4|5@4,c2,c4
SC(6-48), PCS(0,4,8,9,0,2,4,7,8,0)
Pitch Space: (C2,E2,G#2,A2,C3,D3,E3,G3,G#3,C4)
Pitch Class: (0,4,8,9,0,2,4,7,8,0)
SC hear complete.
(/Volumes/xdisc/_scratch/2005.05.22.09.43.37.mid)

 Tutorial 1: The Interactive Command Line Interface

 8

Numerous types of graphical aids are provided by athenaCL to assist in the representation of
musical materials. Depending on the user's Python installation, numerous formats of graphic files
are available. Formats include text (within the Interpreter display), Encapsulated PostScript
(convertible to PDF), Tk GUI Windows, JPEG, and PNG. Tk requires the Python TkInter GUI
installation; JPEG and PNG require the Python Imaging Library (PIL) installation.

The user can set an active graphic format with the APgfx command. For example:

Example 1-11. Setting the active graphics format with APgfx

[PI()TI()] :: apgfx
active graphics format: eps.
select text, eps, tk, jpg, png. (t, e, k, j, or p): p
graphics format changed to png.

To test the production of graphic output, the MCnet command, for MapClass network, can be used:

Example 1-12. Producing a graphical diagram with MCnet

[PI()TI()] :: mcnet 2,1
complete.

 9

Chapter 2. Tutorial 2: AthenaObjects and EventModes

This tutorial provides essential information concerning saving and opening an athenaCL session, as
well as basic information for creating and configuring EventLists and EventModes.

2.1. Introduction to AthenaObjects

The AthenaObject stores the collection of user-created PathInstances and TextureInstances, as well
as the names of the active objects and other settings relevant to the active athenaCL session (and not
stored in the user preference file). The AthenaObject, when saved, is stored as an XML file. When
athenaCL creates an XML AthenaObject file, the resulting file contains the complete state of the
active AthenaObject.

2.2. File Dialogs in athenaCL

The athenaCL system supports a variety of styles of file dialogs, or the interface used to obtain and
write files or directories. The default style of file dialog uses a custom text interface that lets the user
browse their file system. Alternatively, all commands that require file or directory paths may be
executed by supplying the complete file path as a command-line argument.

Use of text-base file dialogs, however, may not be convenient for some users. For this reason
athenaCL offers GUI-based graphical file dialogs on platforms and environments that support such
features. On Python installations that have the Tk GUI library TkInter installed, Tk-based file
dialogs are available. On the Macintosh platform (OS9 and OSX) native MacOS file-dialogs are
available. To change they athenaCL dialog style, enter the command APdlg:

Example 2-1. Changing the file dialog style with APdlg

[PI()TI()] :: apdlg
active dialog visual method: mac.
select text, tk, or mac. (t, k, or m): t
dialog visual method changed to text.

Note: on some platforms use of GUI windows from inside a text-environment may cause
unexpected results. In most cases, use of the "pythonw" Python command to start athenaCL (rather
than "python") solves these problems.

2.3. Loading and Removing an AthenaObject

The command AOl, for AthenaObject load, permits the user to load an AthenaObject XML file.
Numerous small demonstration files are included within athenaCL. In the following example, the
user loads the file "demo01.xml".

The following display demonstrates use of the text-based file-dialogs. When using the text-based
interface, the user must select a directory before selecting a file. In the example below, the user

 Tutorial 2: AthenaObjects and EventModes

 10

enters "demo" to enter the "demo" directory in the athenaCL directory. The user then enter "s" to
select this directory. Next, the user has the option the select a file from this directory, change the
directory, or cancel. The user chooses to select a file with "f". After entering the name of the file
("demo01.xml") and confirming, the AthenaObject is loaded:

Example 2-2. Loading an AthenaObject with text-based file selection

[PI()TI()] :: aol
select an AthenaObject file:
name file, change directory, or cancel? (f, cd, c): cd
/src/athenaCL
..
.cvsignore .DS_Store __init__.py __init__.pyc __init__.pyo
athenacl.py athenacl.pyc athenaObj.py athenaObj.pyc athenaObj.pyo
CVS demo docs libATH setup.py
to change directory enter name, path, or ".."
cancel or select? (c or s): demo
/src/athenaCL/demo
..
.DS_Store __init__.py CVS demo01.xml demo02.xml
demo03.xml demo04.xml demo05.xml demo06.xml spectrum01.txt
test tutorial02.xml tutorial03.xml tutorial04.xml tutorial05.xml
to change directory enter name, path, or ".."
cancel or select? (c or s): s
select an AthenaObject file:
name file, change directory, or cancel? (f, cd, c): f
name file? demo01.xml
/src/athenaCL/demo/demo01.xml
 select this file? (y, n, or cancel): y
 1.3.1 xml AthenaObject loaded (00:06):
/src/athenaCL/demo/demo01.xml

To confirm that the AthenaObject has been loaded, the user may enter TIls to display a list of all
TextureInstances. (For more information concerning Textures, see Chapter 5).

Example 2-3. Listing TextureInstances with Tils

[PI(y0)TI(a2)] :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}
 _space + MonophonicOrnament x0 62 39.0--40.0 0
 a0 + MonophonicOrnament y0 50 01.0--41.0 0
 a1 + MonophonicOrnament y0 50 01.0--41.0 0
 + a2 + MonophonicOrnament y0 50 01.0--41.0 0

The entire AthenaObject can be erased and set to its initial state without restarting the athenaCL
program. The following example uses AOrm, for AthenaObject remove, to re-initialize the
AthenaObject. Note: the AOrm will permanently remove all objects within athenaCL and cannot be
"un-done."

 Tutorial 2: AthenaObjects and EventModes

 11

Example 2-4. Reinitializing the AthenaObject with AOrm

[PI(y0)TI(a2)] :: aorm
destroy the current AthenaObject? (y or n): y
reinitializing AthenaObject.

[PI()TI()] ::

If the AthenaObject file is located in the athenaCL "demo" directory, or a directory from which a
file was opened or saved-to by the user within the current session, athenaCL can find the file by
giving the AOl command with the file's name as a command-line argument. To reload
"demo01.xml", the user may enter the following arguments:

Example 2-5. Loading an AthenaObject from the command-line

[PI()TI()] :: aol demo01.xml
 1.3.1 xml AthenaObject loaded (00:06):
/src/athenacl/demo/demo01.xml

2.4. EventModes and EventOutputs

After loading a demonstration file containing TextureInstances, athenaCL can be used to create an
EventList. As a poly-paradigm system with integrated instrument models, athenaCL supports
numerous formats of EventLists and can work with a wide variety of sound sources, including
Csound and MIDI. What types of EventLists are created depends on two settings within athenaCL:
the EventMode and the EventOutput.

The EventModes configure athenaCL for working with a particular sound source and Orchestra
model, such as the internal Csound orchestra (csoundNative), external Csound orchestras
(csoundExternal), various types of MIDI files (generalMidi an generalMidiPercussion), and others.
The EventMode determines what instruments are available for Texture creation (see Chapter 5, as
well as the operation of some EventList commands. In some cases, the EventMode forces certain
EventOutput formats to be written as well.

The EventOutputs select what file formats will be created when a new EventList is generated.
athenaCL permits the user to create an EventList in numerous formats simultaneously. For example,
a Csound score and orchestra, a MIDI file, and tab-delimited table can all be produced from one call
to the EventList new command. Some EventOutput formats are created only if the AthenaObject
contains Textures created in the appropriate EventMode. Other EventOutput formats can be
created with any Texture in any EventMode. Such conflicts, however, are never a problem:
athenaCL simply creates whatever EventOutput formats are appropriate based on the user-specified
request.

To view the current EventMode, enter EMls. To view the current list of selected EventOutputs,
enter EOls. The following example demonstrates these commands:

 Tutorial 2: AthenaObjects and EventModes

 12

Example 2-6. Viewing EventMode and EventOutputs

[PI(y0)TI(a2)] :: emls
command.py: command in debug mode.
EventMode modes available:
{name}
 csoundExternal
 + csoundNative
 csoundSilence
 midi
 midiPercussion

[PI(y0)TI(a2)] :: eols
command.py: command in debug mode.
EventOutput active:
{name}
 acToolbox
 audioFile
 csoundBatch
 csoundData
 csoundOrchestra
 csoundScore
 maxColl
 + midiFile
 textSpace
 textTab
 + xmlAthenaObject

To select an additional EventOutput to be requested when a new EventList is created, enter the
command EOo, for EventOutput select. To remove an EventOutput, enter the command EOrm,
for EventOutput remove. In the following example, the user adds a tab-delimited table output
("textTab") and a specialized output file for the AC Toolbox ("acToolbox"). After viewing the
EventOutput list, these EventOutputs are removed. Note: EventOutputs, like many selection in
athenaCL, can be designated using automatic acronym expansion (AAE), the user providing only the
leading character and capitals.

Example 2-7. Adding and Removing EventOutputs

[PI(y0)TI(a2)] :: eoo tt at
EventOutput formats: midiFile, xmlAthenaObject, textTab, acToolbox.

[PI(y0)TI(a2)] :: eols
EventOutput active:
{name}
 + acToolbox
 audioFile
 csoundBatch
 csoundData
 csoundOrchestra
 csoundScore
 maxColl
 + midiFile
 textSpace
 + textTab
 + xmlAthenaObject

[PI(y0)TI(a2)] :: eorm tt at
EventOutput formats: midiFile, xmlAthenaObject.

 Tutorial 2: AthenaObjects and EventModes

 13

2.5. Creating an EventList

To create an EventList, the command ELn, for EventList new, must be called. This command
generates a new EventList for each Texture and Clone, and writes necessary EventOutput formats.
Each time the ELn command is called, a new musical variant (depending on Texture, Clone, and
ParameterObject specification) is produced. It is possible, even likely, that two EventLists, generated
from the same AthenaObject file, will not be identical. EventLists, further, are never stored within
an AthenaObject. For this reason, users should be careful to save and preserve produced EventList
files.

When using the ELn command, the user must name the EventList. The EventList name is given as
a file name (or a complete file path) ending with an ".xml" extension. Although the ELn command
may produce many files, only one file path needs to be provided: all other EventOutput format file
names are derived from this source .xml file path. If EventOutput xmlAthenaObject is active, an
XML AthenaObject file will be written along with whatever user-specified or EventMode-mandated
EventOutput formats are created.

In the example above, the user's EventOutput format specification indicates that midiFile and
xmlAthenaObject are active outputs. The current EventMode, however, is set to csoundNative, and
the Textures of "demo01.xml", upon examination, were created with csoundNative instruments. For
these reasons, the ELn command, in this case, will produce an .xml AthenaObject file, a .sco file, an
orchestra file (.orc), a MIDI file (.mid), and a script file for processing the Csound orchestra and
score (.bat). (Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable directory.)
For example:

Example 2-8. Creating a new EventList with Eln

[PI(y0)TI(a2)] :: eln
name an EventList. use a ".xml" extension: test01.xml
/Volumes/xdisc/_scratch
 save in this directory? (y, n, or cancel): y
/Volumes/xdisc/_scratch/test01.xml
 save this file? (y, n, or cancel): y
 EventList test01 complete:
/Volumes/xdisc/_scratch/test01.bat
/Volumes/xdisc/_scratch/test01.orc
/Volumes/xdisc/_scratch/test01.sco
/Volumes/xdisc/_scratch/test01.mid
/Volumes/xdisc/_scratch/test01.xml

Csound files require additional processing to hear the results: this will be demonstrated below. The
MIDI file, however, can be listened to immediately with any MIDI file player, such as QuickTime.
To hear the file produced by ELn, enter the command ELh, for EventList hear:

Example 2-9. Opening an EventList with Elh

[PI(y0)TI(a2)] :: elh
EventList hear initiated: /Volumes/xdisc/_scratch/test01.mid

 Tutorial 2: AthenaObjects and EventModes

 14

Depending on operating system configuration, the ELh command should open the newly-created
MIDI file in a MIDI-file player. Alternatively, the MIDI file can be opened in an application that
supports MIDI files, such as a notation program or sequencer.

The ELn command, as all athenaCL commands, can be used with command-line arguments. To
create an EventList, simply provide a complete file path following the the ELn command. (Replace
"/Volumes/xdisc/_scratch/" with a complete file path to a suitable directory.)

Example 2-10. Creating a new EventList with Eln and command-line arguments

[PI(y0)TI(a2)] :: eln /Volumes/xdisc/_scratch/test02.xml
 EventList test02 complete:
/Volumes/xdisc/_scratch/test02.bat
/Volumes/xdisc/_scratch/test02.orc
/Volumes/xdisc/_scratch/test02.sco
/Volumes/xdisc/_scratch/test02.mid
/Volumes/xdisc/_scratch/test02.xml

Using the ELh command to listen to this EventList, the user should identify that although "test01"
and "test02" are closely related, each musical fragment has subtle or drastic differences. The
differences between these files is an example of the variance produced by algorithmic generation.

2.6. Configuring and Using Csound

Although Csound files were created in the above examples, only the resulting MIDI files were
auditioned. To produce audio files with Csound, some additional configuration may be necessary.

To create an audio file with Csound, two files are required: a score (.sco) and an orchestra (.orc);
alternatively, both files can be combined into a single XML file called (within athenaCL) a
csoundData file (.csd). With the csoundNative instruments and EventMode, all necessary Csound
files are created by athenaCL. To activate csoundData file production, the EventOutput csoundData
must be selected. Alternatively, users can create only a Csound score (with EventModes
csoundExternal or csoundSilence), and apply this score to any desired external Csound orchestra.

The Csound audio rendering software must be installed separately. Csound is an open source, free,
cross platform program available for all major operating systems.

Once configured properly, athenaCL provides commands to control Csound rendering. The user
may be required to provide the location of (file path to) the Csound program; the location of the
Csound program is set with the APea command, or Athena Preferences external applications
command. Each platform has a different default Csound application specified. Unix: default position
is /usr/local/bin/csound; MacOS X: default Csound is the same as Unix; MacOS 9: default Csound
is the "Mills" version of Csound; Windows: users must select the Csound executable,
"winsound.exe," with the APea command. The user can select a different Csound with the APea
command; this selection is stored in the user preferences and is maintained between athenaCL
sessions.

 Tutorial 2: AthenaObjects and EventModes

 15

Assuming that the necessary Csound files were created with ELn as demonstrated above, the user
may view the Csound score file created with the command ELv, or EventList view. Depending on
operating system configuration, this command will open the score file with a platform-specific text
reader. Alternatively, the .sco file can be manually selected and opened by the user.

Whenever athenaCL creates Csound files under EventMode csoundNative, a script file (.bat) is
created to automate rendering of the audio file from the Csound score and orchestra (or .csd file).
The script instructs Csound to create an audio file with the same name as the score in the same
directory as the score, orchestra, and batch file.

Prior to writing files with the ELn command, the desired audio file format can be specified from
within athenaCL using the command CPff. The user will be prompted to select a file format from
the options given. Note: the user must set Csound options before executing ELn; otherwise, they
will have no effect until a new EventList is created.

Example 2-11. Changing the Csound audio file format with CPff

[PI(y0)TI(a2)] :: cpff
current audio file format: aif.
select aif, wav, or sd2. (a, w, or s): a
audio file format changed to aif.

Assuming correct Csound installation and configuration within athenaCL, the user can enter ELr to
automatically initiate Csound rendering of the last Csound score created with ELn. ELr, using the
operating system, calls the athenaCL-created script. For ELr to function, and thus the ELn-created
script to function, the Csound score and orchestra files (or .csd file) must remain in their original
locations.

Example 2-12. Rendering a Csound score

[PI(y0)TI(a2)] :: elr
audio rendering initiated: /Volumes/xdisc/_scratch/test02.bat

Alternatively, users can render Csound files created in athenaCL within any Csound application, just
as they would for any other Csound score and orchestra, manually setting file Paths, file formats,
and Csound option flags. See Csound documentation for more information on using Csound.

As demonstrated above with MIDI files, the user can open the Csound-rendered audio file with the
ELh command. This command opens the audio file with a platform-specific media player.

Example 2-13. Opening Csound-generated audio files with ELh

[PI(y0)TI(a2)] :: elh
EventList hear initiated: /Volumes/xdisc/_scratch/test02.aif
EventList hear initiated: /Volumes/xdisc/_scratch/test02.mid

 Tutorial 2: AthenaObjects and EventModes

 16

To summarize, there are three athenaCL commands needed to create, render, and hear a Csound
score, and they must be executed in order: ELn, ELr, ELh. To link these three commands, the user
can set a automation preference with the CPauto command. When this option is toggled, the single
command ELn will create an EventList, render it in Csound, and open the Csound-created audio file
with a platform-specific media player.

2.7. Saving and Merging AthenaObjects

Loading a new AthenaObject will completely replace the current AthenaObject contents. For this
reason, users should always save their work before loading a new AthenaObject. The user can,
alternatively, merge AthenaObjects. Merging is a powerful tool: the user can combine many
AthenaObjects that have been saved separately, or combine an AthenaObject numerous times with
itself. In the example below, the user merges "demo01.xml", loaded above, with another the same
AthenaObject "demo01.xml". The file paths for athenaCL demonstration files are known to
athenaCL, and thus the user can simply provide the name of the demonstration file as a
command-line argument.

Example 2-14. Merging AthenaObjects with AOmg

[PI(y0)TI(a2)] :: aomg demo01.xml
 1.3.1 xml AthenaObject merged (00:07):
/Users/ariza/_x/src/athenaCL/demo/demo01.xml

The command TIls can be used to confirm that the AthenaObjects have been merged. The AOmg
command, in the case that two Paths or Textures have the same name, automatically alters the name
by appending an underscore ("_"). In the case where an AthenaObject is merged with itself as in this
example, each Texture and Path is duplicated.

Example 2-15. Listing TextureInstances

[PI(y0)TI(a2)] :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}
 _space + MonophonicOrnament x0 62 39.0--40.0 0
 space + MonophonicOrnament x0_ 62 39.0--40.0 0
 a0 + MonophonicOrnament y0 50 01.0--41.0 0
 a0_ + MonophonicOrnament y0_ 50 01.0--41.0 0
 a1 + MonophonicOrnament y0 50 01.0--41.0 0
 a1_ + MonophonicOrnament y0_ 50 01.0--41.0 0
 + a2 + MonophonicOrnament y0 50 01.0--41.0 0
 a2_ + MonophonicOrnament y0_ 50 01.0--41.0 0

As shown above, the user may create a new MIDI or Csound EventList of this new AthenaObject
and audition the results. As should be clear, the resulting musical structure will sound more dense
due to the additional Textures. Due to algorithmic variation, each Texture will remain relatively
independent.

 Tutorial 2: AthenaObjects and EventModes

 17

To save the current AthenaObject, the user may create an XML AthenaObject file. Although
AthenaObject files may be created with the proper EventOutput selection and by use of the ELn
command, in same cases the user my want to create the XML AthenaObject file alone. The
command AOw, for AthenaObject Write, provides this functionality. The user must name the
AthenaObject with a ".xml" extension. In the example below the user saves the merged files as a
new AthenaObject named "merged.xml" using a command-line argument. If desired, the AOw
command can be used without command-line arguments to select the location of the file with an
interactive file dialog. (Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable
directory.)

Example 2-16. Creating a new AthenaObject with AOw

[PI(y0)TI(a2)] :: aow /Volumes/xdisc/_scratch/merged.xml
 AthenaObject saved:
/Volumes/xdisc/_scratch/merged.xml

Saving your work in athenaCL is very important, and should be done often. The athenaCL system
can not reconstruct an AthenaObject from an EventList or an audio file; an athenaCL session can
only be reconstructed by loading an AthenaObject XML file.

 18

Chapter 3. Tutorial 3: Creating and Editing Paths

This tutorial demonstrates the basic features of the Path, including creating, storing, examining, and
editing Paths.

3.1. Introduction to Paths

A PathInstance (or a Path or PI) is an ordered collection of pitch groups. A pitch group, or a
Multiset, is the simultaneous representation of pitch-space, pitch-class space, and set-class
information for a collection of microtonally-specified pitches. This collection can be treated as an
ordered or unordered collection, can be edited by transposition, replacement, or serial re-ordering,
and can be used by one or more Textures to provide pitch materials that are then independently
transposed and interpreted by the Texture and its ParameterObjects.

A PathInstance allows the representation of ordered content groups, and presents this
representation as a multifaceted object. Paths can be of any length, from one to many Multisets long.
A Multiset can be specified in terms of pitch class (excluding octave information with integers from
0 to 11), or in terms of pitch-space (including octave information with integers below 0 or above 11,
or with register-specific note names such as C3 and G#12). A Multiset can also be specified as a
group, set, or scale sequence such as a Forte set-class (Forte 1973) or a Xenakis sieve (Ariza 2005b).
Finally, Multisets can be derived from spectrums and frequency analysis information provided from
the cross-platform audio editor Audacity (enter "help audacity" for more information).

Each Path, in addition to Multiset representations, contains a collection of PathVoices. A PathVoice
is a collection of voice-leading maps that connect each adjacent Multiset in a Path. For a single Path,
there can be any number of PathVoices, each defining a different network of voice leadings for the
entire Path (enter "help voice" for more information).

A Path can be used as an analytical tool, where the Path, its Multisets, and its PathVoices represent
harmonic units. The simultaneous representation of pitch materials provides the ability to move
smoothly between layers of pitch abstraction.

A Path, as a compositional tool, can be developed as a network of intervallic and motivic
associations. The interpretation of a Path by a Texture provides access to diverse pitch
representations for a variety of musical contexts, and permits numerous Textures to share identical
or related pitch information. The use of a Path in a Texture, however, is optional: a Path can
function, at a minimum, simply as a referential point in Pitch space from which subsequent Texture
transpositions are referenced.

3.2. Creating, Selecting, and Viewing PathInstances

To create a PathInstance, enter PIn (for PathInstance new) at the athenaCL prompt. You must
name the new Path, and then supply a pitch group, Forte-number, Xenakis sieve, or alternative pitch
representation (enter "help pitch" for more information on pitch representations).

 Tutorial 3: Creating and Editing Paths

 19

Example 3-1. Creating a new PathInstance with PIn

[PI()TI()] :: pin
name this PathInstance: pathA
enter a pitch set, sieve, spectrum, or set-class: e$, e, c#
 SC 3-2B as (D#4,E4,C#4)? (y, n, or cancel): y
 add another set? (y, n, or cancel): y
enter a pitch set, sieve, spectrum, or set-class: 0,1,6,7
 SC 4-9 as (C4,C#4,F#4,G4)? (y, n, or cancel): y
 add another set? (y, n, or cancel): y
enter a pitch set, sieve, spectrum, or set-class: 3-11
 SC 3-11A as (C4,D#4,G4)? (y, n, or cancel): y
 add another set? (y, n, or cancel): y
enter a pitch set, sieve, spectrum, or set-class: 7@3|6@4, g2, c4
 SC 4-6 as (A#2,B2,F3,B3,C4)? (y, n, or cancel): y
 add another set? (y, n, or cancel): n
PI pathA added to PathInstances.

[PI(pathA)TI()] ::

Note that after successfully creating a Path, the athenaCL cursor tool changes to reflect the active
Path: the name in parenthesis following "PI" designates the active Path ("pathA"). The same
information is provided for a TextureInstance following the "TI" prefix. To view the active PI, enter
PIv at the athenaCL prompt:

Example 3-2. Viewing a Path with PIv

[PI(pathA)TI()] :: piv
PI: pathA, voiceType: map
psPath 3,4,1 0,1,6,7 0,3,7 -14,-13,-7,-1,0
 D#4,E4,C#4 C4,C#4,F#4,G4 C4,D#4,G4 A#2,B2,F3,B3,C4
pcsPath 3,4,1 0,1,6,7 0,3,7 10,11,5,11,0
scPath 3-2B 4-9 3-11A 4-6
durFraction 1(25%) 1(25%) 1(25%) 1(25%)
TI References: none.
PathVoices:
 + auto 3:4-1,4:3-1,3:5-1

This display provides all essential information about a Path. The header contains the name of the
Path ("pathA") and the voiceType ("map"). The voiceType attribute is decided based on the size of
each Multiset in the Path. voiceType will be discussed in greater detail in Section 4.1 below.

The parallel presentation of psPath, pcsPath, and scPath illustrates the simultaneous availability of
pitch space, pitch class space, and set class representations. The label "TI references", when needed,
provides information on which TextureInstances link to this PathInstance. The label "PathVoices"
provides information on voice leading groups available for this Path.

In order to hear a possible interpretation of this Path, the command PIh generates a MIDI file based
on a simple interpretation of the Path with the active TextureModule. The resulting musical
structure is only provided to audition the Path, and uses default values for all musical parameters.
The MIDI file is written in the user-specified scratch directory (see Example 1-9) and is opened via
the operating system.

 Tutorial 3: Creating and Editing Paths

 20

Example 3-3. Creating a MIDI file with PIh

[PI(pathA)TI()] :: pih
PI pathA hear with TM LineGroove complete.
(/Volumes/xdisc/_scratch/2005.05.23.08.19.28.mid)

A second Path can be created exclusively with Forte set class numbers. In this example, all
arguments are provided via the command line:

Example 3-4. Creating a Path with Forte numbers

[PI(pathA)TI()] :: pin pathB 5-3 6-4 7-34 4-14
PI pathB added to PathInstances.

[PI(pathB)TI()] ::

A newly-created Path always becomes the active Path. Entering PIv will display the details of the
newly created Path:

Example 3-5. Displaying a Path

[PI(pathB)TI()] :: piv
PI: pathB, voiceType: none
psPath 0,1,2,4,5 0,1,2,4,5,6 0,1,3,4,6,8,10
 C4,C#4,D4,E4,F4 C4,C#4,D4,E4,F4,F#4 C4,C#4,D#4,E4,F#4,G#4,
pcsPath 0,1,2,4,5 0,1,2,4,5,6 0,1,3,4,6,8,10
scPath 5-3A 6-4 7-34
durFraction 1(25%) 1(25%) 1(25%)
 ..
 0,2,3,7
 A#4 C4,D4,D#4,G4
 0,2,3,7
 4-14A
 1(25%)
TI References: none.
PathVoices: none.

As is clear from the PIv display above, when a Multiset in a Path is entered as a Set class, a pitch
space and a pitch class space representation (psPath, pcsPath) are created from the normal-form of
the desired SetClass.

In order to display the complete collection of Paths available in the AthenaObject, the user enters
PIls, for PathInstance list:

Example 3-6. Listing Paths

[PI(pathA)TI()] :: pils
PathInstances available:
{name,TIrefs,PVgroups,scPath}
 pathA 0 1 3-2B,4-9,3-11A,4-6
 + pathB 0 0 5-3A,6-4,7-34,4-14A

 Tutorial 3: Creating and Editing Paths

 21

Many displays provided by athenaCL are given in columns of data. After whatever header
information is give, a key, in braces ("{}"), is provided to define the data provided in each column.
In the example above, the key shows that each row contains the name of the PI, the number of TI
references, the number of PathVoices, and an scPath representation of the Path. The "+" next to
"pathB" illustrates that this PI is currently active. All "ls" commands use a similar designation.

Many commands in athenaCL function by using an "active" object. The active PI defines which
Path is used in many different commands. For example, the PIv command, when used without an
argument for which Path to display, displays the active Path.

To select a different PI as the active PI, simply enter PIo. The user is prompted to either enter the
name of the Path to select, or its order number from the "ls" view (where 1 is pathA, 2 is pathB).
Displaying the list of all PathInstances will confirm that pathA is now the selected PI.

Example 3-7. Selecting Paths

[PI(pathB)TI()] :: pio
select a path to activate: (name or number 1 - 2): pathA
path pathA now active.

[PI(pathA)TI()] :: pils
PathInstances available:
{name,TIrefs,PVgroups,scPath}
 + pathA 0 1 3-2B,4-9,3-11A,4-6
 pathB 0 0 5-3A,6-4,7-34,4-14A

Alternatively the user can enter the name of the Path to be selected as a command-line argument
with the PIo command. After making pathA active, the user can make pathB active again by
entering the following:

Example 3-8. Selecting a Path with an argument

[PI(pathA)TI()] :: pio pathB
PI pathB now active.

3.3. Copying and Removing PathInstances

In order to manage the collection of Paths in the AthenaObject, the user can copy and remove
Paths. In all cases of copying and removing user-defined objects in athenaCL, the active object is
never assumed to be the object that the command should be performed upon. Said another way, the
user must always specify which object(s) to copy or remove.

To copy a Path instance, enter PIcp and select a Path to copy:

Example 3-9. Copying a Path with PIcp

[PI(pathA)TI()] :: picp
select a path to copy: (name or number 1-2): pathB

 Tutorial 3: Creating and Editing Paths

 22

name the copy of path pathB: pathC
PI pathC added to PathInstances.

[PI(pathC)TI()] :: pils
PathInstances available:
{name,TIrefs,PVgroups,scPath}
 pathA 0 1 3-2B,4-9,3-11A,4-6
 pathB 0 0 5-3A,6-4,7-34,4-14A
 + pathC 0 0 5-3A,6-4,7-34,4-14A

To delete a Path, enter PIrm and select a Path to delete as above. In the example below, the Path to
delete is given with a command line argument:

Example 3-10. Removing a Path with PIrm

[PI(pathC)TI()] :: pirm pathB
PI pathB destroyed.

3.4. Editing PathInstances

A Path can be edited as a serial succession of Multisets with the standard assortment of serial
operations: retrograde, rotation, and slice. Additionally, each Multiset in a Path can be changed,
either by transposition or replacement.

Whenever a serial edit is performed on a Path, the edited Path becomes a new, distinct Path and the
original Path is left unchanged. For example, to create the retrograde of the active Path, enter PIret.
The user must provide the name of the new Path:

Example 3-11. Creating a retrograde of a Path with PIret

[PI(pathC)TI()] :: piret
name this PathInstance: pathCret
retrograde path pathCret added to PathInstances.

[PI(pathCret)TI()] :: pils
PathInstances available:
{name,TIrefs,PVgroups,scPath}
 pathA 0 1 3-2B,4-9,3-11A,4-6
 pathC 0 0 5-3A,6-4,7-34,4-14A
 + pathCret 0 0 4-14A,7-34,6-4,5-3A

To create a rotation, the user, after entering PIrot, must enter the number of the Multiset to occupy
the new first position. If the new first position is to be the second Multiset, the user would enter 2:

Example 3-12. Creating a rotation of a Path with PIrot

[PI(pathCret)TI()] :: pirot
name this PathInstance: pathCretRot
which chord should start the rotation? (positions 2-4): 2
rotation PI pathCretRot added to PathInstances.

 Tutorial 3: Creating and Editing Paths

 23

[PI(pathCretRot)TI()] :: pils
PathInstances available:
{name,TIrefs,PVgroups,scPath}
 pathA 0 1 3-2B,4-9,3-11A,4-6
 pathC 0 0 5-3A,6-4,7-34,4-14A
 pathCret 0 0 4-14A,7-34,6-4,5-3A
 + pathCretRot 0 0 7-34,6-4,5-3A,4-14A

A slice will extract a segment from a Path. To create a slice, enter PIslc. The user is prompted for
the name of the new Path, and the start and end Multiset positions. If the slice is to only contain the
last two chords of a four chord Path, for example, the start and end positions would be 3,4:

Example 3-13. Creating a slice of a Path with PIslc

[PI(pathCretRot)TI()] :: pislc
name this slice of path pathCretRot: pathD
which chords should bound the slice? (positions 1 - 4): 3,4
slice PI pathD added to PathInstances.

[PI(pathD)TI()] :: pils
PathInstances available:
{name,TIrefs,PVgroups,scPath}
 pathA 0 1 3-2B,4-9,3-11A,4-6
 pathC 0 0 5-3A,6-4,7-34,4-14A
 pathCret 0 0 4-14A,7-34,6-4,5-3A
 pathCretRot 0 0 7-34,6-4,5-3A,4-14A
 + pathD 0 1 5-3A,4-14A

There are three ways to edit a single Multiset within a Path using the PIe command: by replacement,
by transposition, or by inversion. In all cases, the number of elements in the Multiset must be
maintained. After a Multiset is changed, maps in PathVoices are retained, though all rankings are
updated.

To edit a single Multiset in a Path enter PIe:

Example 3-14. Transposing a set within a Path

[PI(pathD)TI()] :: pie
edit PI pathD
enter position to edit (positions 1-2): 2
replace, transpose, or invert set (0,2,3,7): (r, t, or i): t
enter a transposition method: literal or modulus? (l or m): l
enter a positive or negative transposition: 8
path pathD edited.

[PI(pathD)TI()] :: piv
PI: pathD, voiceType: map
psPath 0,1,2,4,5 8,10,11,15
 C4,C#4,D4,E4,F4 G#4,A#4,B4,D#5
pcsPath 0,1,2,4,5 8,10,11,3
scPath 5-3A 4-14A
durFraction 1(50%) 1(50%)
TI References: none.
PathVoices:

 Tutorial 3: Creating and Editing Paths

 24

 + auto 5:4-1

Here the user has selected the Multiset in position "2" of PI "pathD" to edit. The user next selects
to edit the set by transposition, entering "t". There are two methods of transposition available: a
"literal" transposition is done in pitch space, creating a new set in the range of all positive and
negative integers; a "modulus" transposition is done in pitch-class space, creating a new set in the
range of pitch-classes 0 through 11. In the example above the user has selected a literal ("l")
transposition and enters "8" as the transposition value. This shifts each pitch in the Multiset up 8
half-steps. Since this is a literal and not a modulus transposition, pitch 5 becomes pitch 15, or D#5.

Any Multiset in a Path can be replaced with a Multiset of equal size. For example, the same Multiset
edited above can be replaced with any four-element Multiset:

Example 3-15. Replacing a Multiset with a new Multiset

[PI(pathD)TI()] ::pie
edit PI pathD
enter position to edit (positions 1-2): 2
replace, transpose, or invert set (8,10,11,15): (r, t, or i): r
enter a pitch set, sieve, or set-class: 2,2,4,4
 SC 2-2 as (D4,D4,E4,E4)? (y, n, or cancel): y
path pathD edited.

[PI(pathD)TI()] :: piv
PI: pathD, voiceType: map
psPath 0,1,2,4,5 2,2,4,4
 C4,C#4,D4,E4,F4 D4,D4,E4,E4
pcsPath 0,1,2,4,5 2,2,4,4
scPath 5-3A 2-2
durFraction 1(50%) 1(50%)
TI References: none.
PathVoices:
 + auto 5:4-1

The new Multiset (2,2,4,4) consists of four elements. To return this Path to its original form, we can
replace the second Multiset with the original Multiset:

Example 3-16. Replacing a set with a Forte name

[PI(pathD)TI()] :: pie
edit PI pathD
enter position to edit (positions 1-2): 2
replace, transpose, or invert set (2,2,4,4): (r, t, or i): r
enter a pitch set, sieve, or set-class: 4-14A
 SC 4-14A as (0,2,3,7)? (y, n, or cancel): y
path pathD edited.

[PI(pathD)TI()] :: piv
PI: pathD, voiceType: map
psPath 0,1,2,4,5 0,2,3,7
 C4,C#4,D4,E4,F4 C4,D4,D#4,G4
pcsPath 0,1,2,4,5 0,2,3,7
scPath 5-3A 4-14A
durFraction 1(50%) 1(50%)

 Tutorial 3: Creating and Editing Paths

 25

TI References: none.
PathVoices:
 + auto 5:4-1

 26

Chapter 4. Tutorial 4: PathVoices and PathSets

This tutorial explores additional features of the Path useful for modeling and analyzing the Path as a
collection of PathVoices (voice-leading structures) and PathSets (set-class structures). These
features, while providing advanced pitch modeling tools, are not directly related to the use of Paths
in Textures.

4.1. PathVoices and voiceType

In addition to functioning as a collection of Multisets, a PathInstance can also contain, sort, and edit
transformations, or voice leadings, between these sets. Voice leadings between sets are designated by
maps. A map describes the movement between two sets. A MapClass defines each possibility of
movement. For example, between two 3-element sets there are six different maps. Each map, when
applied to the origin and destination Multiset, produces a unique voice leading. The series of maps
selected for a Path is called a PathVoice.

When working with PathVoices in athenaCL, each member of a Multiset is taken to represent a
voice. When viewing PathVoices, sets are represented vertically from top to bottom in the order
entered.

For efficiency, voice leadings are not permitted to exceed six voices. If a Path has a Multiset with
more than six pitches no PathVoice operations will be permitted, though it can still be created and
used in all other contexts. In order to identify the relationship between the size of Multisets and
available PathVoice operations, each Path has a "voiceType" that defines three states. A voiceType
of "none" designates a Path that has any Multiset with more than six elements, or consists only of a
single Multiset. PathVoice operations are not available on Paths of this type. A voiceType of "map"
designates a Path in which each Multiset has six or fewer elements and the number of elements in
each Multiset is not the same. A voiceType of "part" designates a Path in which each set has six or
fewer elements, and each Multiset has the same number of elements.

4.2. Creating, Selecting, and Viewing PathVoices

A PathInstance may contain user-definable collections of maps, or PathVoices. Whenever a Path is
created of voiceType "map" or "part" (see Section 4.1) a PathVoice named "auto" is automatically
created. This PathVoice attempts to create voice leadings in "straight lines" to adjacent Multisets.

For example, using PIn a new Path will be created with Multisets of equal size. After creating the
Path, the command PIv is used to display the new Path's attributes.

Example 4-1. Creating a Path with equal-sized sets

[PI()TI()] :: pin
name this PathInstance: pathVL
enter a pitch set, sieve, or set-class: f#, d, a
 SC 3-11B as (6,2,9)? (y, n, or cancel): y
 add another set? (y, n, or cancel): y
enter a pitch set, sieve, or set-class: 8, 3, 5

 Tutorial 4: PathVoices and PathSets

 27

 SC 3-7A as (8,3,5)? (y, n, or cancel): y
 add another set? (y, n, or cancel): y
enter a pitch set, sieve, or set-class: a, f, c#
 SC 3-12 as (9,5,1)? (y, n, or cancel): y
add another set? (y, n, or cancel): n
PI pathVL added to PathInstances.

[PI(pathVL)TI()] :: piv
command.py: command in debug mode.
PI: pathVL, voiceType: part
psPath 6,2,9 8,3,5 9,5,1
 F#4,D4,A4 G#4,D#4,F4 A4,F4,C#4
pcsPath 6,2,9 8,3,5 9,5,1
scPath 3-11B 3-7A 3-12
durFraction 1(33%) 1(33%) 1(33%)
TI References: none.
PathVoices:
 + auto 3:3-1,3:3-1

The last label of the PIv display shows available PathVoices. The entry "3:3-1, 3:3-1" designates the
two maps in PathVoice "auto" using a MapClass notation. MapClasses are notated with three-integer
labels. The first value is the size of the origin, the second value is the size of the destination, and the
third value is the MapClass index number, a unique value provided for all maps between a given
destination and source size.

To view the active PathVoice of the active Path in greater detail, enter PVv. If the user has
configured a graphic output method (see Example 1-11) and has selected a scratch directory (see
Example 1-9), a graphical depiction of the PathVoice will be provided.

Example 4-2. Viewing the active PathVoice group

[PI(pathVL)TI()] :: pvv
PI: pathVL, PathVoice: auto
 6 a 8 a 9
 2 b 3 b 5
 9 c 5 c 1
....................
 S3 S2
 U5 U4
 B2 B1
 of6 of6

The heading provides the PathVoice's name as well as the name of the PathInstance to which it
belongs: here "auto" and "pathVL," respectively. PVv displays two rows above and below the dotted
line. The top row displays each of the three sets in a vertical orientation. This vertical orientation is
determined by the order of pitches in a set, where left-to-right is translated to top-to-bottom.

 Tutorial 4: PathVoices and PathSets

 28

The lower case letters that follow each pitch of the first and the second vertical set designate the
voice leading mapping. Each lower case letter refers to a position in the next set. These positions are
labeled form "a" to "f" from top to bottom. This notation of Maps can also be represented on a
single line of horizontal text, such as (abc). Thus the set (6,2,9) maps to the set (8,3,5) in the
following manner: 6 moves to "a", or 8 in the next set; 2 moves to "b", or 3 in the next set; 9 moves
to "c", or 5 in the next set. Map letters are analogous to drawing lines between each member of a
vertical set: the origin of the line is the position of the letter, the destination the position designated
by the letter.

Below the dotted line is voice leading analysis data for each map represented above the line. The
labels "S", "U", and "B" designate Smoothness, Uniformity, and Balance (Straus 2003). These
analysis methods provide rankings by comparing the voice leading with all possible voice leadings.
"S3" designates that the active map is ranked third of six possible maps in terms of smoothness.
"U5" designates that the active map is ranked fifth of six possible maps in terms of uniformity. "B2"
designates that the active map is ranked second of six possible maps in terms of balance. The last
entry "of6" shows the total number of possible mappings.

A less intuitive but more detailed presentation of the same PathVoice is provided by the command
PVan:

Example 4-3. Viewing detailed map analysis data

[PI(pathVL)TI()] :: pvan
PI: pathVL, PathVoice: auto
Position 1,2: origin (6,2,9) destination (8,3,5)
MC 3:3-1 map (abc)
 VL (6--8),(2--3),(9--5)
 SMTH vector:(0,1,1,0,1,0,0) displacement:7
 UNIF vector:(0,1,1,0,0,0,0,0,1,0,0,0) offset:6 (Tn:1) max:1 span:7
 BAL vector:(0,0,2,0,0,1,0,0,0,0,0,0) offset:3 (In:2) max:2 span:4
 rank S3 U5 B2 of6
Position 2,3: origin (8,3,5) destination (9,5,1)
MC 3:3-1 map (abc)
 VL (8--9),(3--5),(5--1)
 SMTH vector:(0,1,1,0,1,0,0) displacement:7
 UNIF vector:(0,1,1,0,0,0,0,0,1,0,0,0) offset:6 (Tn:1) max:1 span:7
 BAL vector:(0,0,0,0,0,1,1,0,1,0,0,0) offset:3 (In:6) max:1 span:4
 rank S2 U4 B1 of6

This view displays a detailed analysis of each map in the active PathVoice. Between each pair of
Multisets in the Path the MapClass and map are given. The line labeled "VL" shows where each
pitch in the origin set moves in the destination set, separated by a double dash ("--"). Smoothness,
Uniformity, and Balance vectors and analysis values are given, along with a summary of all rankings
(Straus 2003).

To crate a new PathVoice for the active Path, enter the command PVn. The user will be prompted
to name the new PathVoice. For each map in the course of the PathVoice, the user may choose to
enter the map by rank or by index. Choosing a map by rank allows the user to select an analysis
method (Smoothness, Uniformity, or Balance), and then select a map from the relevant ranking.

 Tutorial 4: PathVoices and PathSets

 29

Example 4-4. Creating a new PathVoice group

[PI(pathVL)TI()] :: pvn
name this PathVoice for PI pathVL: smooth
enter a map from (6,2,9) to (8,3,5): by rank or map? (r or m): r
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): s
choose a rank of Smoothness between 1 and 6: 1
 6 c 8
 2 b 3
 9 a 5
 MC 3:3-6 as (cba)? (y, n, or cancel): y
enter a map from (8,3,5) to (9,5,1): by rank or map? (r or m): r
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): s
choose a rank of Smoothness between 1 and 6: 1
 8 a 9
 3 c 5
 5 b 1
 MC 3:3-2 as (acb)? (y, n, or cancel): y
PathVoice smooth added to PI pathVL.

To confirm the new PathVoice, enter PIv to display, along with the Path, all PathVoice Groups, or
enter PVv to display the PathVoice display:

Example 4-5. Viewing a PathVoice

[PI(pathVL)TI()] :: piv
PI: pathVL, voiceType: part
psPath 6,2,9 8,3,5 9,5,1
 F#4,D4,A4 G#4,D#4,F4 A4,F4,C#4
pcsPath 6,2,9 8,3,5 9,5,1
scPath 3-11B 3-7A 3-12
durFraction 1(33%) 1(33%) 1(33%)
TI References: none.
PathVoices:
 auto 3:3-1,3:3-1
 + smooth 3:3-6,3:3-2

[PI(pathVL)TI()] :: pvv
PI: pathVL, PathVoice: smooth
 6 c 8 a 9
 2 b 3 c 5
 9 a 5 b 1
....................
 S1 S1
 U1 U1
 B5 B4
 of6 of6

Notice that the maps (as letters) are changed. Now the set (6,2,9) maps to the set (8,3,5) in the
following manner: 6 moves to "c", or 5 in the next set; 2 moves to "b", or 3 in the next set; 9 moves
to "a", or 8 in the next set.

 Tutorial 4: PathVoices and PathSets

 30

The active PathVoice is "smooth"; to change the active PathVoice, enter PVo:

Example 4-6. Selecting the active PathVoice

[PI(pathVL)TI()] :: pvo
select a PathVoice: (name or number 1 - 2): 1
PathVoice auto now active.

The command PIv includes a list of all PathVoices. To confirm that the selected PathVoice ("auto")
is now active (marked with a "+"), enter this command:

Example 4-7. Viewing PathVoices when viewing a Path

[PI(pathVL)TI()] :: piv
PI: pathVL, voiceType: part
psPath 6,2,9 8,3,5 9,5,1
 F#4,D4,A4 G#4,D#4,F4 A4,F4,C#4
pcsPath 6,2,9 8,3,5 9,5,1
scPath 3-11B 3-7A 3-12
durFraction 1(33%) 1(33%) 1(33%)
TI References: none.
PathVoices:
 + auto 3:3-1,3:3-1
 smooth 3:3-6,3:3-2

It is often useful to create a new PathVoice built of maps all chosen from the same ranking method
and with the same ranking precedence. A PathVoice can then be created whereby each map is, for
example, the least smooth of all possible maps. The PVauto command supports creating such a
PathVoice: after entering PVauto, the user enters a name for the new PathVoice, a ranking method
(Smoothness, Uniformity, or Balance), and selects either the "first" or "last" from the respective
ranking. The example below demonstrates the creation of a "leastSmooth" PathVoice:

Example 4-8. Automatically filling a PathVoice group with a common ranking.

[PI(pathVL)TI()] :: pvauto
name this auto PathVoice for PI pathVL: leastSmooth
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): s
select first or last map from each ranking? (f or l): l
auto PathVoice leastSmooth added to PathInstance pathVL.

[PI(pathVL)TI()] :: pvv
PI: pathVL, PathVoice: leastSmooth
 6 c 8 b 9
 2 a 3 a 5
 9 b 5 c 1
....................
 S6 S6
 U4 U2
 B1 B5
 of6 of6

 Tutorial 4: PathVoices and PathSets

 31

In addition to automatically choosing maps, the command PIopt permits new transpositions for
each Multiset in a Path to be chosen, producing either optimum or anti-optimum PathVoices (Straus
2003). To find optimum voice leadings between any two Multisets, rather than an entire Path, enter
MCopt. When using PIopt to produce a new PathVoice, the active Path is copied to a new,
independent Path. Each Multiset in the new Path is transposed, and the desired PathVoice named
"opt" is created. In the following example the new Path created with PIopt.

Example 4-9. Creating an optimized path and PathVoice group

[PI(pathVL)TI()] :: piopt
name this optimization of PI pathVL: pathVLopt
optimize or anti-optimize? (o or a): o
optimized path pathVLopt added to PathInstances.

[PI(pathVLopt)TI()] :: pvv
PI: pathVLopt, PathVoice: opt
 6 a 6 c 2
 2 c 8 b 10
 9 b 3 a 6
....................
 S1 S1
 U1 U3
 B4 B6
 of6 of6

4.3. Copying and Removing PathVoices

PathVoices can be copied and removed in the same manner as PathInstances. In all cases of copying
and removing user-defined objects in athenaCL, the active object is never assumed to be the object
that the command operates upon. Said another way, the user must always specify which object to
copy or remove.

To copy a PathVoice, enter PVcp and select a PathVoice to copy:

Example 4-10. Copying a PathVoice

[PI(pathVLopt)TI()] :: pio pathVL

[PI(pathVL)TI()] :: pvcp
select a PathVoice to copy: (name or number 1-3): smooth
name this PathVoice for PI smooth: uniform

 Tutorial 4: PathVoices and PathSets

 32

PathVoice uniform created.

[PI(pathVL)TI()] :: piv
PI: pathVL, voiceType: part
psPath 6,2,9 8,3,5 9,5,1
 F#4,D4,A4 G#4,D#4,F4 A4,F4,C#4
pcsPath 6,2,9 8,3,5 9,5,1
scPath 3-11B 3-7A 3-12
durFraction 1(33%) 1(33%) 1(33%)
TI References: none.
PathVoices:
 auto 3:3-1,3:3-1
 leastSmooth 3:3-5,3:3-3
 smooth 3:3-6,3:3-2
 + uniform 3:3-6,3:3-2

To delete a PathVoice, enter PVrm and select a PathVoice to delete. Note: the default PathVoice
"auto" cannot be deleted. Alternatively, the name of the PathVoice can be provided as a
command-line argument:

Example 4-11. Removing a PathVoice group

[PI(pathVL)TI()] :: pvrm smooth
PathVoice smooth destroyed.

4.4. Editing PathVoices

A PathVoice can be edited one map at a time. That is, any single map that connects any two adjacent
sets in a Path can be replaced by a new map. With the PathVoice "uniform," created above, maps
sorted by uniformity can be selected for each map in the PathVoice. In the example below, the PVe
command is called twice: once for the map between Multisets 1 and 2, and again for the map
between Multisets 2 and 3. Maps can be chosen by the same methods described in creating a new
PathVoice with PVn.

Example 4-12. Editing a map in a PathVoice group

[PI(pathVL)TI()] :: pve
PathVoice uniform has map positions (1,2) through (2,3): enter position to edit: 1,2
enter a map from (6,2,9) to (8,3,5): by rank or map? (r or m): r
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): u
choose a rank of Uniformity between 1 and 6: 1
 6 c 8
 2 b 3
 9 a 5
 MC 3:3-6 as (cba)? (y, n, or cancel): y
map at (0,1) in PathVoice uniform edited.

[PI(pathVL)TI()] :: pve
PathVoice uniform has map positions (1,2) through (2,3): enter position to edit: 2,3
enter a map from (8,3,5) to (9,5,1): by rank or map? (r or m): r
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): u
choose a rank of Uniformity between 1 and 6: 1
 8 a 9
 3 c 5

 Tutorial 4: PathVoices and PathSets

 33

 5 b 1
 MC 3:3-2 as (acb)? (y, n, or cancel): y
map at (1,2) in PathVoice uniform edited.

To display the new PathVoice, enter PVv to view the edited PathVoice. Notice the ranking for
Uniformity ("U") is 1 for both maps:

Example 4-13. Viewing a PathVoice group

[PI(pathVL)TI()] :: pvv
PI: pathVL, PathVoice: uniform
 6 c 8 a 9
 2 b 3 c 5
 9 a 5 b 1
....................
 S1 S1
 U1 U1
 B5 B4
 of6 of6

4.5. Analyzing and Comparing PathVoices

As mentioned in above, a detailed voice leading analysis can be displayed for the active PathVoice of
the active PathInstance. Enter PVan to view this display.

Example 4-14. Detailed map data of a PathVoice group

[PI(pathVL)TI()] :: pvan
PI: pathVL, PathVoice: uniform

Position 1,2: origin (6,2,9) destination (8,3,5)
MC 3:3-6 map (cba)
 VL (6--5),(2--3),(9--8)
 SMTH vector:(0,3,0,0,0,0,0) displacement:3
 UNIF vector:(0,1,0,0,0,0,0,0,0,0,0,2) offset:2 (Tn:11) max:2 span:3
 BAL vector:(0,0,0,0,0,2,0,0,0,0,0,1) offset:6 (In:5) max:2 span:7
 rank S1 U1 B5 of6
Position 2,3: origin (8,3,5) destination (9,5,1)
MC 3:3-2 map (acb)
 VL (8--9),(3--1),(5--5)
 SMTH vector:(1,1,1,0,0,0,0) displacement:3
 UNIF vector:(1,1,0,0,0,0,0,0,0,0,1,0) offset:3 (Tn:0) max:1 span:4
 BAL vector:(0,0,0,0,1,1,0,0,0,0,1,0) offset:6 (In:5) max:1 span:7
 rank S1 U1 B4 of6

Instead of an analysis of each map employed in the active PathVoice for all pairs of Multisets, the
user can, with the PVcm command, compare a single map with all possible maps between a single

 Tutorial 4: PathVoices and PathSets

 34

pair of Multisets. This comparison can be done between any two Multisets in the Path. Entering
PVcm allows the user to view all possible maps between two sets, sorted either by Smoothness,
Uniformity, or Balance. The user must supply the position of the Multisets to be compared, the
sorting method, and the range of maps to return. In the following example, the user displays all the
possible maps between a single pair of adjacent sets in a PathInstance, sorting by Balance:

Example 4-15. Viewing sorted map data between two sets

[PI(pathVL)TI()] :: PVcm
PathVoice uniform has map positions (1,2) through (2,3): enter position to compare: 2,3
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): b
there are 6 maps in this ranking. enter a range: (beginRank,endRank): 1,6

PI: pathVL, VL BAL Comparison
Position 2,3: origin (8,3,5) destination (9,5,1)

MC 3:3-1 map (abc)
 VL (8--9),(3--5),(5--1)
 SMTH vector:(0,1,1,0,1,0,0) displacement:7
 UNIF vector:(0,1,1,0,0,0,0,0,1,0,0,0) offset:6 (Tn:1) max:1 span:7
 BAL vector:(0,0,0,0,0,1,1,0,1,0,0,0) offset:3 (In:6) max:1 span:4
 rank S2 U4 B1 of6
MC 3:3-4 map (bca)
 VL (8--5),(3--1),(5--9)
 SMTH vector:(0,0,1,1,1,0,0) displacement:9
 UNIF vector:(0,0,0,0,1,0,0,0,0,1,1,0) offset:6 (Tn:9) max:1 span:7
 BAL vector:(0,1,1,0,1,0,0,0,0,0,0,0) offset:3 (In:2) max:1 span:4
 rank S3 U5 B2 of6
MC 3:3-5 map (cab)
 VL (8--1),(3--9),(5--5)
 SMTH vector:(1,0,0,0,0,1,1) displacement:11
 UNIF vector:(1,0,0,0,0,1,1,0,0,0,0,0) offset:6 (Tn:5) max:1 span:7
 BAL vector:(1,0,0,0,0,0,0,0,0,1,1,0) offset:3 (In:10) max:1 span:4
 rank S5 U6 B3 of6
MC 3:3-2 map (acb)
 VL (8--9),(3--1),(5--5)
 SMTH vector:(1,1,1,0,0,0,0) displacement:3
 UNIF vector:(1,1,0,0,0,0,0,0,0,0,1,0) offset:3 (Tn:0) max:1 span:4
 BAL vector:(0,0,0,0,1,1,0,0,0,0,1,0) offset:6 (In:5) max:1 span:7
 rank S1 U1 B4 of6
MC 3:3-3 map (bac)
 VL (8--5),(3--9),(5--1)
 SMTH vector:(0,0,0,1,1,0,1) displacement:13
 UNIF vector:(0,0,0,0,0,0,1,0,1,1,0,0) offset:3 (Tn:8) max:1 span:4
 BAL vector:(1,1,0,0,0,0,1,0,0,0,0,0) offset:6 (In:1) max:1 span:7
 rank S6 U2 B5 of6
MC 3:3-6 map (cba)
 VL (8--1),(3--5),(5--9)
 SMTH vector:(0,0,1,0,1,1,0) displacement:11
 UNIF vector:(0,0,1,0,1,1,0,0,0,0,0,0) offset:3 (Tn:4) max:1 span:4
 BAL vector:(0,0,1,0,0,0,0,0,1,1,0,0) offset:6 (In:9) max:1 span:7
 rank S4 U3 B6 of6

In the above example, for each map entry a "rank" line is provided with a value for Smoothness,
Uniformity and Balance. Since this display was sorted by Balance ("b"), each map's Balance rank can
be seen in order from top to bottom, B1 through B6.

 Tutorial 4: PathVoices and PathSets

 35

Non-adjacent Multisets can also be compared, allowing the user to investigate mappings that are not
defined by a PathVoice. That is, since a PathVoice only defines maps for adjacent sets, PVcm allows
the user to investigate maps between non-adjacent sets without creating a new Path. For example,
the mappings between the first and the last Multiset of a three-Multiset Path can be compared. In
the following example the user has selected a range of results smaller than the total number of maps
possible. Instead of all six maps, the user has only selected the first three, ranked by Uniformity.
This feature is useful when dealing with maps between large Multisets.

Example 4-16. Viewing fewer than the full range of map analysis data

[PI(pathVL)TI()] :: PVcm
PathVoice uniform has map positions (1,2) through (2,3): enter position to compare: 1,3
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): u
there are 6 maps in this ranking. enter a range: (beginRank,endRank): 1,3

PI: pathVL, VL UNIF Comparison
Position 1,3: origin (6,2,9) destination (9,5,1)

MC 3:3-1 map (abc)
 VL (6--9),(2--5),(9--1)
 SMTH vector:(0,0,0,2,1,0,0) displacement:10
 UNIF vector:(0,0,0,2,1,0,0,0,0,0,0,0) offset:1 (Tn:3) max:2 span:2
 BAL vector:(0,0,0,1,0,0,0,1,0,0,1,0) offset:7 (In:7) max:1 span:8
 rank S4 U1 B4 of6
MC 3:3-4 map (bca)
 VL (6--5),(2--1),(9--9)
 SMTH vector:(1,2,0,0,0,0,0) displacement:2
 UNIF vector:(1,0,0,0,0,0,0,0,0,0,0,2) offset:1 (Tn:11) max:2 span:2
 BAL vector:(0,0,0,1,0,0,1,0,0,0,0,1) offset:7 (In:3) max:1 span:8
 rank S1 U2 B5 of6
MC 3:3-5 map (cab)
 VL (6--1),(2--9),(9--5)
 SMTH vector:(0,0,0,0,1,2,0) displacement:14
 UNIF vector:(0,0,0,0,0,0,0,2,1,0,0,0) offset:1 (Tn:7) max:2 span:2
 BAL vector:(0,0,1,0,0,0,0,1,0,0,0,1) offset:7 (In:11) max:1 span:8
 rank S6 U3 B6 of6

Alternatively, the user can compare maps unrelated to any PathInstance or PathVoice. Using the
MCcm command, the user can sort and view all maps between any pair of Multisets. After entering
the command, the user is prompted for an origin and a destination Multiset, as well as a sort method
and a result range.

Example 4-17. Viewing sorted map analysis data between any pair of sets

[PI(pathVL)TI()] :: MCcm
select SC X:
enter a pitch set, sieve, or set-class: g#, d
 SC 2-6 as (G#4,D4)? (y, n, or cancel): y
select SC Y:
enter a pitch set, sieve, or set-class: a, g, c#, c#, c#
 SC 3-8A as (9,7,1,1,1)? (y, n, or cancel): y
enter ranking method: Smoothness, Uniformity or Balance? (s, u, or b): b
there are 30 maps in this ranking. enter a range: (beginRank,endRank): 1,5

MC BAL Comparison

 Tutorial 4: PathVoices and PathSets

 36

origin (8,2) destination (9,7,1,1,1)

MC 2:5-7 map ((ab)(cde))
 VL (8--9),(8--7),(2--1),(2--1),(2--1)
 SMTH vector:(0,5,0,0,0,0,0) displacement:5
 UNIF vector:(0,1,0,0,0,0,0,0,0,0,0,4) offset:2 (Tn:11) max:4 span:3
 BAL vector:(0,0,0,4,0,1,0,0,0,0,0,0) offset:2 (In:3) max:4 span:3
 rank S1 U1 B1 of30
MC 2:5-24 map ((cde)(ab))
 VL (8--1),(8--1),(8--1),(2--9),(2--7)
 SMTH vector:(0,0,0,0,0,5,0) displacement:25
 UNIF vector:(0,0,0,0,0,4,0,1,0,0,0,0) offset:2 (Tn:5) max:4 span:3
 BAL vector:(0,0,0,0,0,0,0,0,0,4,0,1) offset:2 (In:9) max:4 span:3
 rank S30 U2 B2 of30
MC 2:5-8 map ((acde)b)
 VL (8--9),(8--1),(8--1),(8--1),(2--7)
 SMTH vector:(0,1,0,0,0,4,0) displacement:21
 UNIF vector:(0,1,0,0,0,4,0,0,0,0,0,0) offset:4 (Tn:5) max:4 span:5
 BAL vector:(0,0,0,0,0,1,0,0,0,4,0,0) offset:4 (In:9) max:4 span:5
 rank S25 U3 B3 of30
MC 2:5-23 map (b(acde))
 VL (8--7),(2--9),(2--1),(2--1),(2--1)
 SMTH vector:(0,4,0,0,0,1,0) displacement:9
 UNIF vector:(0,0,0,0,0,0,0,1,0,0,0,4) offset:4 (Tn:11) max:4 span:5
 BAL vector:(0,0,0,4,0,0,0,0,0,0,0,1) offset:4 (In:3) max:4 span:5
 rank S6 U4 B4 of30
MC 2:5-3 map ((abc)(de))
 VL (8--9),(8--7),(8--1),(2--1),(2--1)
 SMTH vector:(0,4,0,0,0,1,0) displacement:9
 UNIF vector:(0,1,0,0,0,1,0,0,0,0,0,3) offset:8 (Tn:11) max:3 span:7
 BAL vector:(0,0,0,3,0,1,0,0,0,1,0,0) offset:8 (In:3) max:3 span:7
 rank S2 U5 B5 of30

4.6. Viewing and Selecting SetMeasures

SetMeasures are methods of analyzing and comparing set-class similarity. Set-class analysis, in
dealing with set-classes and not pitch or pitch-class sets, represents a "higher" level of abstraction.

There are a number of different similarity measures available, representing numerous historical
approaches to set-class analysis (Castren 1994). To display a complete list of SetMeasures available,
enter the command SMls:

Example 4-18. Displaying a list of SetMeasures

[PI(pathVL)TI()] :: smls
SetMeasures available:
{name,reference,distinction}
 + ASIM Morris TnI
 ATMEMB Rahn Tn
 Ak Rahn TnI
 COST Rogers TnI
 IcVD1 Rogers TnI
 IcVD2 Rogers TnI
 IcVSIM Isaacson TnI
 K Morris TnI
 R2 Forte TnI
 REL Lewin Tn
 SIM Morris TnI
 TMEMB Rahn Tn

 Tutorial 4: PathVoices and PathSets

 37

 TpRel Castren Tn

As in other displays, the "+" designates the active object. In the above example, "ASIM" is the
selected SetMeasure. The selected SetMeasure is used in a number of commands that employ
SetMeasures: SCcm, SCs, PScma, and PScmb. In all cases, the active SetMeasure is the analysis
method employed.

4.7. Analyzing and Comparing PathSets

One use of SetMeasures is to compare Multisets (as set classes) of a PathInstance. The PathSet "PS"
commands deal with the PathInstance as a series of set classes. The user-entered pitch space or
pitch-class representations have no relevance on set-class analysis as performed by these
SetMeasures.

There are two methods of set class analysis. The first, PScma, compares each set with the adjacent
set. Entering the PScma command will perform such an analysis on the active PathInstance with the
active SetMeasure. In the example below, a different SetMeasure is first selected:

Example 4-19. Comparing adjacent sets in a Path

[PI(pathVL)TI()] :: smo rel
SetMeasure REL now active.

[PI(pathVL)TI()] :: PScma
PI: pathVL, Lewin REL analysis
Tn
similarity range: 0(min) . | . (max)1
 3-11B
0.50 +.............................
 3-7A
0.00 +...
 3-12
0.43 +..................................
 3-11B

athenaCL produces text-based horizontal graphs to demonstrate relative similarities. The final graph
compares the last SC to the first. It may seem odd that the comparison of 3-7A and 3-12 produces a
minimum value of similarity (0.00). This can be explained by examining the Interval Class Vectors
for these two sets, as done below:

Example 4-20. Examining interval class vectors

[PI(pathVL)TI()] :: scv 3-7a
SC(3-7A), Z(none), mode(Tn)
Pitch Space: (C4,D4,F4)
Pitch Class: (0,2,5)
Normal Form: (0,2,5)
Prime Form: (0,2,5)
Invariance Vector: (1,0,0,0,5,6,5,5)
Interval Class Vector: (0,1,1,0,1,0)

 Tutorial 4: PathVoices and PathSets

 38

References:
 name incomplete minor-seventh chord
Subset Vectors:
3CV(Tn)
 0,0,0,0,0,0,0,0,0,0 - 1,0,0,0,0,0,0,0,0

[PI(4-3)TI()] :: scv 3-12
SC(3-12), Z(none), mode(Tn)
Pitch Space: (C4,E4,G#4)
Pitch Class: (0,4,8)
Normal Form: (0,4,8)
Prime Form: (0,4,8)
Invariance Vector: (3,3,3,3,9,9,9,9)
Interval Class Vector: (0,0,0,3,0,0)
References:
 name augmented triad, equal 3-part octave division
Subset Vectors:
3CV(Tn)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,1

The SCv command shows that these two sets have exclusive Interval Class Vectors: the two sets
have no vector entries (or intervals) in common, and thus are at maximum set class dissimilarity.

The second method of set class analysis is done by comparing one set to every set in a Path. This
method of comparison, PScmb, is performed on the active PathInstance with the active SetMeasure.
The user must provide the comparison, or reference, set class. In the example below, the reference
set class is 4-11:

Example 4-21. Comparing one set to all sets in a Path

[PI(pathVL)TI()] :: PScmb
enter a SC for comparison to the path...
enter a pitch set, sieve, or set-class: 4-11
 SC 4-11A as (C4,C#4,D#4,F4)? (y, n, or cancel): y
PI: pathVL, Lewin REL analysis
Tn
reference SC 4-11A
similarity range: 0(min) . | . (max)1
0.47 3-11B +...............................
0.54 3-7A +...........................
0.27 3-12 +...

 39

Chapter 5. Tutorial 5: Creating and Editing Textures

This tutorial demonstrates basic Texture creation, configuration, and deployment in musical
structures. This chapter is essential for using athenaCL for algorithmic music production.

5.1. Introduction to Textures and ParameterObjects

A TextureInstance (or a Texture or TI) is an algorithmic music layer. Like a track or a part, a
Texture represents a single musical line somewhat analogous to the role of a single instrument in an
ensemble. The music of a Texture need not be a single monophonic line: it may consist of chords
and melody, multiple independent lines, or any combination or mixture. The general generative
shape and potential of a Texture is defined by the TextureModule. A Texture is an instance of a
TextureModule: a single TextureModule type can be used to create many independent instances of
that type; each of these instances can be customized and edited independently. Collections of
TextureInstances are used to create an EventList, or the musical output of all Textures.

A TextureInstance consists of many configurable slots, or attributes. These attributes allow the user
to customize each Texture. Attributes include such properties as timbre (instrument and parametric
timbre specifications), rhythm (duration and tempo), frequency materials (Path, transposition, and
octave position), and mixing (amplitude and panning). Other attributes may control particular
features of the Texture, like the number of voices, position of chords, or formal properties.

Most attributes of a TextureInstance are not fixed values. Unlike a track or a part, a Texture often
does not have a fixed sequence of values for attributes like amplitude, or even fixed note-sequences.
Rather, attributes of a Texture are algorithmic objects, or ParameterObjects. Rather than enter a
value for amplitude, the user chooses a ParameterObject to produce values for the desired attribute,
and enters settings to specialize the ParameterObject's behavior. Rather than enter note-sequences,
the Texture selects and combines pitches from a Path, or a user-supplied sequence of pitch groups.
In this way each attribute of a Texture can be given a range of motion and a degree of indeterminacy
within user-composed boundaries.

A TextureInstance is not a fixed entity: it is a collection of instructions on how to create events for a
certain duration. Every time an EventList is created, each Texture is "performed," or called into
motion to produce events. Depending on the TextureModule and the Texture's configuration, the
events produced may be different each time the EventList is created.

athenaCL is designed to allow users work with broad outlines of musical parameters and materials,
and from this higher level organize and control combinations of Textures. This should not be
confused with a much higher level of algorithmic composition, where an algorithm is responsible for
creating an entire composition: its style, form, parts, and surface. athenaCL is unlikely to produce
such "complete" musical structures. Rather, athenaCL is designed to produce complex, detailed, and
diverse musical structures and surfaces. Combinations of parts and construction of form are left to
the user, and can be composed either in athenaCL or in a Digital Audio Workstation where
athenaCL EventOutput formats, such as MIDI files or Csound-rendered audio files, can be mixed,
processed, and combined in whatever desired fashion. Alternatively, MIDI files produced with
athenaCL can be modified or combined in traditional sequencers and notation editors.

 Tutorial 5: Creating and Editing Textures

 40

5.2. Introduction Instrument Models

athenaCL features numerous integrated instrument models. In some cases these instrument models
are references to external specifications; in other cases these instrument models contain complete
source code necessary for instantiating synthesis systems. Textures are assigned an instrument from
an Orchestra upon creation, and are able to control a wide variety of instrument-specific parameters.

athenaCL features an integrated library of Csound instruments, providing automated control of both
Csound score and orchestra generation and control. For details on installing and using Csound
within athenaCL, see Section 2.6. Csound instruments are signal processing and synthesis
instructions. These instructions designates a certain number of parameters to expose to the user of
the instrument. These parameters allow events in the score to communicate information and settings
to the instrument. athenaCL's integrated library of Csound instruments permits dynamically
constructed orchestra files to be used with athenaCL-generated Csound scores. Alternatively, users
can use external, custom orchestras with athenaCL-written score files. EventModes csoundNative,
csoundExternal, and csoundSilence support diverse ways of working with Csound within athenaCL.

athenaCL provides instrument collections (Orchestras) for working with other EventOutput
formats. For working with MIDI systems, General MIDI (GM) instrument definitions are provided
with the generalMidi and generalMidiPercussion EventModes.

Whenever a Texture is created, an instrument must be specified by number. This is necessary
because the Texture must be configured with additional ParameterObjects for instrument-specific
parameter control. Instruments are always identified by a number, though within athenaCL
descriptive names are provided when available.

The instruments available during Texture creation are dependent on the active EventMode: that is,
for any active EventMode, one Orchestra is available from which a Texture's instrument must be
selected. In the following example, the user lists available EventModes to check that csoundNative
is active, and then views the available instruments with the EMi command.

Example 5-1. Listing available Instruments with EMi

[PI()TI()] :: emls
EventMode modes available:
{name}
 csoundExternal
 + csoundNative
 csoundSilence
 midi
 midiPercussion

[PI()TI()] :: emi
csoundNative instruments:
{number,name}
 3 sineDrone
 4 sineUnitEnvelope
 5 sawDrone
 6 sawUnitEnvelope
 11 noiseWhite
 12 noisePitched
 13 noiseUnitEnvelope
 14 noiseTambourine

 Tutorial 5: Creating and Editing Textures

 41

 15 noiseUnitEnvelopeBandpass
 16 noiseSahNoiseUnitEnvelope
 17 noiseSahNoiseUnitEnvelopeDistort
 20 fmBasic
 21 fmClarinet
 22 fmWoodDrum
 23 fmString
 30 samplerReverb
 31 samplerRaw
 32 samplerUnitEnvelope
 33 samplerUnitEnvelopeBandpass
 34 samplerUnitEnvelopeDistort
 35 samplerUnitEnvelopeParametric
 36 samplerSahNoiseUnitEnvelope
 40 vocodeNoiseSingle
 41 vocodeNoiseSingleGlissando
 42 vocodeNoiseQuadRemap
 43 vocodeNoiseQuadScale
 44 vocodeNoiseQuadScaleRemap
 45 vocodeNoiseOctScale
 46 vocodeNoiseOctScaleRemap
 47 vocodeNoiseBiOctScale
 48 vocodeNoiseTriOctScale
 50 guitarNylonNormal
 51 guitarNylonLegato
 52 guitarNylonHarmonic
 60 additiveBellBright
 61 additiveBellDark
 62 additiveBellClear
 70 synthRezzy
 71 synthWaveformVibrato
 72 synthVcoAudioEnvelopeSineQuad
 73 synthVcoAudioEnvelopeSquareQuad
 74 synthVcoDistort
 80 pluckTamHats
 81 pluckFormant
 82 pluckUnitEnvelope
 110 noiseAudioEnvelopeSineQuad
 111 noiseAudioEnvelopeSquareQuad
 130 samplerAudioEnvelopeSineQuad
 131 samplerAudioEnvelopeSquareQuad
 132 samplerAudioFileEnvelopeFilter
 133 samplerAudioFileEnvelopeFollow
 140 vocodeSineOctScale
 141 vocodeSineOctScaleRemap
 142 vocodeSineBiOctScale
 143 vocodeSineTriOctScale
 144 vocodeSineQuadOctScale
 145 vocodeSinePentOctScale
 146 vocodeSineHexOctScale
 230 samplerVarispeed
 231 samplerVarispeedAudioSine
 232 samplerVarispeedReverb
 233 samplerVarispeedDistort
 234 samplerVarispeedSahNoiseDistort
 240 vocodeVcoOctScale
 241 vocodeVcoOctScaleRemap

Other EventModes provide other Orchestras for use in Textures. In the example below, the user
selects the EventMode midiPercussion with the EMo command and examines the available
instruments with the EMi command:

 Tutorial 5: Creating and Editing Textures

 42

Example 5-2. Examining additional Instruments with EMi

[PI()TI()] :: emo mp
EventMode mode set to: midiPercussion.

[PI()TI()] :: emi
generalMidiPercussion instruments:
{number,name}
 35 acousticBassDrum
 36 bassDrum1
 37 sideStick
 38 acousticSnare
 39 handClap
 40 electricSnare
 41 lowFloorTom
 42 closedHiHat
 43 highFloorTom
 44 pedalHiHat
 45 lowTom
 46 openHiHat
 47 lowMidTom
 48 hiMidTom
 49 crashCymbal1
 50 highTom
 51 rideCymbal1
 52 chineseCymbal
 53 rideBell
 54 tambourine
 55 splashCymbal
 56 cowBell
 57 crashCymbal2
 58 vibraSlap
 59 rideCymbal2
 60 hiBongo
 61 lowBongo
 62 muteHiConga
 63 openHiConga
 64 lowConga
 65 highTimbale
 66 lowTimbale
 67 highAgogo
 68 lowAgogo
 69 cabasa
 70 maracas
 71 shortWhistle
 72 longWhistle
 73 shortGuiro
 74 longGuiro
 75 claves
 76 hiWoodBlock
 77 lowWoodBlock
 78 muteCuica
 79 openCuica
 80 muteTriangle
 81 openTriangle

5.3. Selecting and Viewing TextureModules

A Texture is an instance of a TextureModule. Every time a Texture is created, athenaCL creates an
independent instance of the active TextureModule. To display a complete list of all available
TextureModules, enter the command TMls:

 Tutorial 5: Creating and Editing Textures

 43

Example 5-3. Listing TextureModules with TMls

[PI()TI()] :: tmls
TextureModules available:
{name,TIreferences}
 DroneArticulate 0
 DroneSustain 0
 HarmonicAssembly 0
 HarmonicShuffle 0
 InterpolateFill 0
 InterpolateLine 0
 IntervalExpansion 0
 LineCluster 0
 + LineGroove 0
 LiteralHorizontal 0
 LiteralVertical 0
 MonophonicOrnament 0
 TimeFill 0
 TimeSegment 0

As in other athenaCL displays, the first line of the display is a key, telling the user that the list
consists of a name followed by the number of TI references. This number displays the count of
TextureInstances referenced from a parent TextureModule. The "+" designates the active
TextureModule. When creating a new TextureInstance, athenaCL uses the active TextureModule.

To select a different TextureModule, the user enters TMo. The user is prompted to enter the name
or number (as represented in the list order) of the desired TextureModule. The TMls command can
be used to confirm the change.

Example 5-4. Selecting the active TextureModule with TMo

[PI()TI()] :: tmo
which TextureModule to activate? (name or number 1-14): da
TextureModule DroneArticulate now active.

[PI()TI()] :: tmls
TextureModules available:
{name,TIreferences}
 + DroneArticulate 0
 DroneSustain 0
 HarmonicAssembly 0
 HarmonicShuffle 0
 InterpolateFill 0
 InterpolateLine 0
 IntervalExpansion 0
 LineCluster 0
 LineGroove 0
 LiteralHorizontal 0
 LiteralVertical 0
 MonophonicOrnament 0
 TimeFill 0
 TimeSegment 0

Here the user has entered "da", to select the TextureModule DroneArticulate. Whenever selecting
objects in athenaCL the user may enter the acronym (formed from the leading character and all

 Tutorial 5: Creating and Editing Textures

 44

following capitals), the literal name ("dronearticulate"), or the ordinal number as displayed in the
corresponding list display.

To learn what a particular TextureModule does, as well what types of Texture options are available,
enter the command TMv, for TextureModule View. In this example, the user, with TIo, selects the
TextureModule "LineGroove" (with a command-line argument) before entering the TMv command.

Example 5-5. Viewing details of the active TextureModule

[PI()TI()] :: tmo linegroove
TextureModule LineGroove now active.

[PI()TI()] :: tmv
TextureModule: LineGroove; author: athenaCL native
This TextureModule performs each set of a Path as a simple monophonic line;
pitches are chosen from sets in the Path based on the pitch selector control.
texture (s)tatic
parallelMotionList Description: List is a collection of transpositions
 created above every Texture-generated base note. The
 timeDelay value determines the amount of time in seconds
 between each successive transposition in the
 transpositionList. Arguments: (1) name, (2)
 transpositionList, (3) timeDelay
pitchSelectorControl Description: Define the selector method of Path pitch
 selection used by a Texture. Arguments: (1) name, (2)
 selectionString {'randomChoice', 'randomWalk',
 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}
levelFieldMonophonic Description: Toggle between selection of local field
 (transposition) values per set of the Texture Path, or per
 event. Arguments: (1) name, (2) level {'set', 'event'}
levelOctaveMonophonic Description: Toggle between selection of local octave
 (transposition) values per set of the Texture Path, or per
 event. Arguments: (1) name, (2) level {'set', 'event'}
texture (d)ynamic

The TMv command displays the name of the TextureModule along with the author of its code.
Following the author designation is a description of how the module performs. Following this is
documentation for all TextureStatic parameter objects, or Texture-specific options and
user-configurable settings pertinent to the particular TextureModule's algorithmic design.

5.4. Creating, Selecting, and Viewing TextureInstances

A TextureInstance is always linked to a Path. If no Paths exists when the Texture is created, a
default Path is automatically created consisting of a single Multiset with a single pitch (middle C, or
C4). If Paths exists when the Texture is created, the active PathInstance is assigned to the Texture. A
TextureInstance's Path can be later edited. For a complete introduction to Paths see Chapter 3.

A new TextureInstance is always created from the active TextureModule; the user must then always
select the desired TextureModule before creating a Texture of the desired type. A TextureInstance's
type, or TextureModule, cannot be changed after the Texture is created.

 Tutorial 5: Creating and Editing Textures

 45

A new Texture is created with the TIn command, for TextureInstance New. The user is prompted
to name the new Texture and select an instrument by number. If the number of the desired
instrument is not known, a "?" can be entered to display a list of instruments. In the example below
the user selects TextureMode LineGroove, EventMode midiPercussion, and then creates a texture
named "a1" with instrument 64 ("lowConga").

Example 5-6. Creating a new TextureInstance with TIn

[PI()TI()] :: tmo linegroove
TextureModule LineGroove now active.

[PI()TI()] :: emo mp
EventMode mode set to: midiPercussion.

[PI()TI()] :: tin
name this texture: a1
enter instrument number:
(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)
or "?" for instrument help: 64
TI a1 created.

To hear the resulting musical structure, enter the command ELn. In the example below, the user
provides the necessary file-path as a command-line argument. (For more information on using ELn,
see Section 2.5. Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable
directory.) The resulting MIDI file may be opened with the ELh command.

Example 5-7. Creating a new EventList with ELn

[PI(auto-lowConga)TI(a1)] :: eln /Volumes/xdisc/_scratch/a01.xml
 EventList a01 complete:
/Volumes/xdisc/_scratch/a01.mid
/Volumes/xdisc/_scratch/a01.xml

After creating a Texture, the TIv command can be used to view the active Texture:

Example 5-8. Viewing a TextureInstance

[PI(auto-lowConga)TI(a1)] :: tiv
TI: a1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 000.0--20.16
(i)nstrument 64 (generalMidiPercussion: lowConga)
(t)ime range 00.0--20.0
(b)pm constant, 120
(r)hythm loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
(p)ath auto-lowConga
 (E4)
 20.00(s)
local (f)ield constant, 0
local (o)ctave constant, 0

 Tutorial 5: Creating and Editing Textures

 46

(a)mplitude constant, 0.9
pan(n)ing constant, 0.5
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

The TIv command displays all essential attributes of a Texture. Each label in the display corresponds
to an attribute in the TextureInstance. The TIv display is in two-blocks. The first block gives
parameters that are constant. The first line displays the name of the TextureInstance (a1), the name
of the parent TextureModule (LineGroove), the number of TextureClones (0), and the active
TextureTemperament (TwelveEqual). The second line displays the PitchMode (pitchSpace), the
PolyMode (set), the silenceMode (off), and the postMapMode (on). The third line provides the GM
MIDI program name (piano1). The fourth, indented line displays the TextureInstance's mute status
(where a "o" is muted and a "+" is non-muted) and the absolute duration the Texture's events.

The second block lists the primary algorithmic controls of the Texture. The names of these
attributes use parenthesis to designate a single-letter abbreviation. The instrument attribute is
displayed first, with the value following the label: instrument number (64), the name of the orchestra
(generalMidiPercussion) and the name of the instrument (lowConga). The next attribute is
time-range, the start and end time in seconds from the beginning of the EventList. A new Texture is
given a default time-range of twenty seconds (00.0--20.0). New Textures, when created, get their
time-range from the active Texture.

The bpm attribute is the tempo in beats per minute. The value is set with the ParameterObject
"constant" to produce a tempo of 120 BPM. In most cases, the bpm control is used to calculate the
duration of rhythms and pulses used in a Texture.

The rhythm attribute designates a Rhythm ParameterObject to control the generation of event
durations. Rhythm ParameterObjects often notate rhythms as lists of Pulses. A Pulse is designated
as a list of three elements: (divisor, multiplier, accent). The duration of a rhythm is calculated by
dividing the time of a beat (from the bpm parameter) by the Pulse divisor, then multiplying the
result by the Pulse multiplier. The value of the "accent" determines if a duration is a note or a rest,
where 1 or a "+" designates a note, 0 or a "o" designates a rest. Thus an eighth note is given as
(2,1,1), a dotted-quarter note as (2,3,1), and dotted-eighth rest as (4,3,0). In the example above, the
ParameterObject "loop" is used with three Pulses: two sixteenth notes (4,1,1) and a duration equal to
a quarter-note tied to a sixteenth note (4,5,1).

The Path attribute gives the name of the PathInstance used by this Texture, followed on the next
line by the Multiset pitches that will be used. PathInstances are linked to the Texture. Thus if a
change is made to a Path (with PIe, for example), all Textures that use that Path will reflect the
change. Each TextureInstance, however, can control the interpretation of a Path in numerous ways.
The Texture PitchMode setting, for example, determines if pitches are derived from a Path in
pitchSpace, pitchClassSpace, or as a setClass. The local field and local octave attributes permit each
Texture to transpose pitches from the Path independently.

 Tutorial 5: Creating and Editing Textures

 47

The attribute local field stores a ParameterObject that controls local transposition of Path pitches.
Values are given in semitones, and can include microtonal transpositions as floating-point values
following the semitone integer. Thus, a transposition of five half-steps and a quarter-tone would be
equal to 5.5. A transposition of a major tenth would be 16. In the example above the attribute value
instructs the Texture to use a ParameterObject called "constant." Note: some EventOutput formats
do not support microtonal pitch specification. In such cases microtones are rounded to the nearest
semitone. The attribute local octave, similar to local field, controls the octave position of Path
pitches. Each integer represents an octave shift, where 0 is no octave shift, each Path pitch retaining
its original octave register.

The amplitude attribute designates a ParameterObject to control the amplitude of the Texture,
measured in a symbolic range from 0 to 1. The panning attribute designates the ParameterObject
used to control spatial location in stereo or quadraphonic space. Values are along the unit interval,
from 0 to 1.

The attributes that make up the "auxiliary" listing provide any number of additional
ParameterObjects to control instrument specific parameter fields. The number of parameter fields is
determined by the instrument definition.

The last attributes, texture static and texture dynamic, designate controls specific to particular
TextureModules. The values here can be edited like other attributes.

A second Texture will be created with TIn named "b1" and using instrument 62. The Texture, after
creation, is displayed with the TIv command.

Example 5-9. Creating and viewing a TextureInstance

[PI(auto-lowConga)TI(a1)] :: tin
name this texture: b1
enter instrument number:
(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)
or "?" for instrument help: 62
TI b1 created.

[PI(auto-muteHiConga)TI(b1)] :: tiv
TI: b1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 000.0--20.16
(i)nstrument 62 (generalMidiPercussion: muteHiConga)
(t)ime range 00.0--20.0
(b)pm constant, 120
(r)hythm loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
(p)ath auto-muteHiConga
 (D4)
 20.00(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude constant, 0.9
pan(n)ing constant, 0.5
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate

 Tutorial 5: Creating and Editing Textures

 48

 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

This new Texture, though created with the same TextureModule, is a completely autonomous
object. No changes to "a1" will have any effect on "b1".

During an athenaCL session a user can create any number of TextureInstances and save this
collection in an AthenaObject file for latter use. For more information on saving, loading, and
merging AthenaObjects see Chapter 2. To view a list of all current Textures, enter the command
TIls, for TextureInstance List.

Example 5-10. Listing all TextureInstances

[PI(auto-muteHiConga)TI(b1)] :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}
 a1 + LineGroove auto-lowConga 64 00.0--20.0 0
 + b1 + LineGroove auto-muteHiConga 62 00.0--20.0 0

This display shows a list of all Textures, each Texture on a single line. The information given, in
order from left to right, is the name, the mute-status, the parent TM, the PathInstance, the
instrument number, the time-range, and the number of TextureClones. Notice the "+" in front of
Texture "b1": this designates that this Texture is active. To change the active Texture, enter the
command TIo either with a command-line argument or alone:

Example 5-11. Selecting the active TextureInstance

[PI(auto-muteHiConga)TI(b1)] :: tio a1
TI a1 now active.

[PI(auto-muteHiConga)TI(a1)] ::

In order to compare a single attribute of all Textures, the user can enter the command TEv, for
TextureEnsemble View. TextureEnsemble refers to the collection of all Textures, and all TE
commands process all Textures simultaneously. The user will be prompted to enter an abbreviation
for the desired attribute. Attribute abbreviations are notated in the TIv display labels. Thus the
attribute abbreviation for "(a)mplitude" is "a"; the attribute abbreviation for "pan(n)ing" is "n." As
with other commands, use of command-line arguments provides flexible control:

Example 5-12. Viewing parameter values for all Textures

[PI(auto-muteHiConga)TI(a1)] :: tev
compare texture parameters: which parameter? a
compare parameters: (a)mplitude
{name,value,}
a1 constant, 0.9
b1 constant, 0.9

 Tutorial 5: Creating and Editing Textures

 49

[PI(auto-muteHiConga)TI(a1)] :: tev i
compare parameters: (i)nstrument
{name,value,}
a1 64 (generalMidiPercussion: lowConga)
b1 62 (generalMidiPercussion: muteHiConga)

5.5. Copying and Removing Texture Instances

TextureInstances can be duplicated with the command TIcp. The user is prompted to enter the
name of the Texture to be copied, and then the name of the copy. The copy can be confirmed by
listing all Textures with the command TIls.

Example 5-13. Copying a TextureInstance

[PI(auto-muteHiConga)TI(a1)] :: ticp
which TextureInstnace to copy? (name or number 1-2): b1
name this copy of TI 'b1': b2
TextureInstance b2 created.

[PI(auto-muteHiConga)TI(b2)] :: tils
{name,status,TM,PI,instrument,time,TC}
 a1 + LineGroove auto-lowConga 64 00.0--20.0 0
 b1 + LineGroove auto-muteHiConga 62 00.0--20.0 0
 + b2 + LineGroove auto-muteHiConga 62 00.0--20.0 0

Textures can be deleted with the command TIrm, for TextureInstance Remove. The user is
prompted to enter the name of the Texture to be deleted. The removal can be confirmed by listing
all Textures with the command TIls.

Example 5-14. Removing a TextureInstance

[PI(auto-muteHiConga)TI(b2)] :: tirm
which TextureInstnace to delete? (name or number 1-3): b2
are you sure you want to delete texture b2? (y, n, or cancel): y
TI b2 destroyed.

[PI(auto-muteHiConga)TI(a1)] :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}
 + a1 + LineGroove auto-lowConga 64 00.0--20.0 0
 b1 + LineGroove auto-muteHiConga 62 00.0--20.0 0

When the active Texture is deleted, as it is above, athenaCL chooses a new Texture to activate, here
choosing "a1." To select a different Texture, use the command TIo.

 Tutorial 5: Creating and Editing Textures

 50

5.6. Editing TextureInstance Attributes

Each attribute of a Texture can be edited to specialize its performance. Some attributes such as
instrument, time-range, and Path are static: they do not change over the duration of a Texture.
Other attributes are dynamic, such as bpm, rhythm, local field, local octave, amplitude and panning,
and can be configured with a wide range of ParameterObjects.

Texture attributes are edited with the TIe command. The command first prompts the user to select
which attribute to edit. Attributes are named by a single-letter abbreviation, as notated in the TIv
display with parenthesis. Next, the current value of the attribute is displayed, followed by a prompt
for the new value. In the following example the time range of Texture "a1" is edited:

Example 5-15. Editing a TextureInstance

[PI(auto-muteHiConga)TI(a1)] :: tie
edit TI a1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): t
current time range: 0.0, 20.0
new value: 5,20
TI a1: parameter time range updated.

[PI(auto-muteHiConga)TI(a1)] :: tiv
TI: a1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 0005.0--20.006
(i)nstrument 64 (generalMidiPercussion: lowConga)
(t)ime range 05.0--20.0
(b)pm constant, 120
(r)hythm loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
(p)ath auto-lowConga
 (E4)
 15.00(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude constant, 0.9
pan(n)ing constant, 0.5
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

In the example above the user select "t" to edit the active Texture's time-range attribute. In general,
new values for attributes must be entered with the same syntax with which they are displayed. In this
example, time-range values are given as two numbers separated by a comma. Deviation from this
syntax will return an error. The user enters 5, 20 to set the time-range attribute to the duration from
5 to 20 seconds.

The command TEe, for TextureEnsemble Edit can be used to edit the entire collection of Textures
with one command. In the following example the user selects the amplitude attribute with "a" and
then enters a new ParameterObject: randomUniform. The randomUniform parameterObject

 Tutorial 5: Creating and Editing Textures

 51

produces random values with a uniform distribution between the required arguments for minimum
and maximum. After this edit, TEv, with the command-line argument "a", can be used to view the
amplitude for all Textures and confirm the edit.

Example 5-16. Editing a single parameter of all Textures with TEe

[PI(auto-muteHiConga)TI(a1)] :: tee
edit all TextureInstances
which parameter? (i,t,b,r,p,f,o,a,n,x,s): a
sample amplitude: constant, 0.9
new value: ru, .6, 1
TI a1: parameter amplitude updated.
TI b1: parameter amplitude updated.

[PI(auto-muteHiConga)TI(a1)] :: tev a
compare parameters: amplitude
{name,value,}
a1 randomUniform, (constant, 0.6), (constant, 1)
b1 randomUniform, (constant, 0.6), (constant, 1)

Using ELn, the current collection of Textures can be used to create an EventList, and ELh may be
used to audition the results. (For more information on using ELn, see Section 2.5.) The random
fluctuation of amplitude values should provide a variety of accent patterns to the fixed rhythmic
loop.

The collection of Textures can be displayed in a graphical and textual diagram produced by the
TEmap command. This command lists each Texture and Clone within the current AthenaObject
and provides a proportional representation of their respective start and end times.

Example 5-17. Generating a graphical display of Texture position with TEmap

[PI(auto-muteHiConga)TI(a1)] :: temap
TextureEnsemble Map:
20.16s | . | . | . | . |
a1 __
b1 __

5.7. Muting Textures

Textures can be muted to disable the inclusion of their events in all EventOutputs. Textures and
their Clones (see Chapter 7) can be muted independently. The command TImute, if no arguments
are given, toggles the current Texture's mute status. The following example demonstrates muting
Texture a1, listing all Textures with with TIls, and then displaying the collection of Textures with the
TEmap command. Notice that in the TIls display, the "status" of Texture a1 is set to "o", meaning
that it is muted.

 Tutorial 5: Creating and Editing Textures

 52

Example 5-18. Muting a Texture with TImute

[PI(auto-muteHiConga)TI(a1)] :: timute
TI a1 is now muted.

[PI(auto-muteHiConga)TI(a1)] :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}
 + a1 o LineGroove auto-lowConga 64 05.0--20.0 0
 b1 + LineGroove auto-muteHiConga 62 00.0--20.0 0

[PI(auto-muteHiConga)TI(a1)] :: temap
TextureEnsemble Map:
20.16s | . | . | . | . |
a1 __
b1 __

By providing the name of one or more Textures as command-line arguments, numerous Texture's
mute status can be toggled. In the following example, Texture a1 is given as an argument to the
TImute command. The TIls command shows that the Texture is no longer muted.

Example 5-19. Removing mute status with TImute

[PI(auto-muteHiConga)TI(a1)] :: timute a1
TI a1 is no longer muted.

[PI(auto-muteHiConga)TI(a1)] :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}
 + a1 + LineGroove auto-lowConga 64 05.0--20.0 0
 b1 + LineGroove auto-muteHiConga 62 00.0--20.0 0

5.8. Viewing and Searching ParameterObjects

For each dynamic attribute of a TextureInstance, a ParameterObject can be assigned to an attribute
in order to produce values over the duration of the Texture. Complete documentation for all
ParameterObjects can be found in Appendix C. Texture attributes for bpm, local field, local octave,
amplitude, panning, and all auxiliary parameters (if required by the instrument) can have
independent ParameterObjects.

ParameterObjects are applied to a Texture attribute with an argument list. athenaCL accepts lists in
the same comma-separated format of Python list data structures. A list can consist of elements like
strings, numbers, and other lists, each separated by a comma. Within athenaCL, text strings need not
be in quotes, and sub-lists can be given with either parenthesis or brackets. Each entry in the
ParameterObject argument list corresponds, by ordered-position, to an internal setting within the
ParameterObject. The first entry in the argument list is always the name of the ParameterObject.
ParameterObject names, as well as all ParameterObject configuration strings, can always be accessed

 Tutorial 5: Creating and Editing Textures

 53

with automatic acronym expansion: abbreviated by the first character followed by each following
capital letter.

To display a list if all available ParameterObjects, enter the command TPls, for TextureParameter
list:

Example 5-20. Displaying all ParameterObjects with TPls

[PI(auto-muteHiConga)TI(a1)] :: tpls
Generator ParameterObject
{name}
 accumulator
 analysisSelect
 basketGen
 basketSelect
 breakGraphFlat
 breakGraphHalfCosine
 breakGraphLinear
 breakGraphPower
 breakPointFlat
 breakPointHalfCosine
 breakPointLinear
 breakPointPower
 caList
 caValue
 constant
 constantFile
 cyclicGen
 directorySelect
 envelopeGeneratorAdsr
 envelopeGeneratorTrapezoid
 envelopeGeneratorUnit
 fibonacciSeries
 funnelBinary
 henonBasket
 iterateCross
 iterateGroup
 iterateHold
 iterateSelect
 iterateWindow
 listPrime
 logisticMap
 lorenzBasket
 markovGeneratorAnalysis
 markovValue
 mask
 maskReject
 maskScale
 noise
 oneOver
 operatorAdd
 operatorCongruence
 operatorDivide
 operatorMultiply
 operatorPower
 operatorSubtract
 pathRead
 quantize
 randomBeta
 randomBilateralExponential
 randomCauchy

 Tutorial 5: Creating and Editing Textures

 54

 randomExponential
 randomGauss
 randomInverseExponential
 randomInverseLinear
 randomInverseTriangular
 randomLinear
 randomTriangular
 randomUniform
 randomWeibull
 sampleAndHold
 sampleSelect
 sieveFunnel
 sieveList
 staticInst
 staticRange
 typeFormat
 valuePrime
 valueSieve
 waveCosine
 wavePowerDown
 wavePowerUp
 wavePulse
 waveSawDown
 waveSawUp
 waveSine
 waveTriangle

Rhythm Generator ParameterObject
{name}
 binaryAccent
 convertSecond
 convertSecondTriple
 gaRhythm
 iterateRhythmGroup
 iterateRhythmHold
 iterateRhythmWindow
 loop
 markovPulse
 markovRhythmAnalysis
 pulseSieve
 pulseTriple
 rhythmSieve

Filter ParameterObject
{name}
 bypass
 filterAdd
 filterDivide
 filterDivideAnchor
 filterFunnelBinary
 filterMultiply
 filterMultiplyAnchor
 filterPower
 filterQuantize
 maskFilter
 maskScaleFilter
 orderBackward
 orderRotate
 pipeLine
 replace

 Tutorial 5: Creating and Editing Textures

 55

To display detailed documentation for a ParameterObject, enter the command TPv, for Texture
Parameter view. In the following example the user views the ParameterObjects wavePowerDown
and noise by providing command line arguments for the desired ParameterObject name:

Example 5-21. Viewing ParameterObject reference information

[PI(auto-muteHiConga)TI(a1)] :: tpv wpd
Generator ParameterObject
{name,documentation}
WavePowerDown wavePowerDown, stepString, parameterObject, phase, exponent,
 min, max
 Description: Provides a power down wave between 0 and 1 at a
 rate given in either time or events per period. This value
 is scaled within the range designated by min and max; min
 and max may be specified with ParameterObjects. Depending on
 the stepString argument, the period rate (frequency) may be
 specified in spc (seconds per cycle) or eps (events per
 cycle). The phase argument is specified as a value between 0
 and 1. Note: conventional cycles per second (cps or Hz) are
 not used for frequency. Arguments: (1) name, (2) stepString
 {'event', 'time'}, (3) parameterObject {secPerCycle}, (4)
 phase, (5) exponent, (6) min, (7) max

[PI(auto-muteHiConga)TI(a1)] :: tpv noise
Generator ParameterObject
{name,documentation}
Noise noise, resolution, parameterObject, min, max
 Description: Fractional noise (1/fn) Generator, capable of
 producing states and transitions between 1/f white, pink,
 brown, and black noise. Resolution is an integer that
 describes how many generators are used. The gamma argument
 determines what type of noise is created. All gamma values
 are treated as negative. A gamma of 0 is white noise; a
 gamma of 1 is pink noise; a gamma of 2 is brown noise; and
 anything greater is black noise. Gamma can be controlled by
 a dynamic ParameterObject. The value produced by the noise
 generator is scaled within the unit interval. This
 normalized value is then scaled within the range designated
 by min and max; min and max may be specified by
 ParameterObjects. Arguments: (1) name, (2) resolution, (3)
 parameterObject {gamma value as string or number}, (4) min,
 (5) max

The command TPmap provides graphical displays of ParameterObject-generated values. (To
configure athenaCL graphics output, see Example 1-11.) The user must supply the name of the
ParamaterObject library (Generator, Rhythm, or Filter), the number of events to generate, and the
ParameterObject argument list.

Example 5-22. ParameterObject Map display with TPmap

[PI(auto-muteHiConga)TI(a1)] :: tpmap
select a library: Generator, Rhythm, or Filter. (g, r, f): g
number of events: 120
enter a Generator ParameterObject argument: wpd, e, 30, 0, 2
wavePowerDown, event, 30, 0, 2, (constant, 0), (constant, 1)
TPmap display complete.

 Tutorial 5: Creating and Editing Textures

 56

The TPmap, like other athenaCL commands, can be used with command-line arguments. In the
following example, the user produces a TPmap display of the noise ParameterObject, generating
"brown" fractional noise:

Example 5-23. ParameterObject Map display with TPmap

[PI(auto-muteHiConga)TI(a1)] :: tpmap g 120 n,50,(c,2),0,1
snoise, 50, (constant, 2), (constant, 0), (constant, 1)
TPmap display complete.

5.9. Editing ParameterObjects

To edit an attribute of Texture, a user enters a new ParameterObject argument list. The command
TIe, as before, first prompts the user to select which attribute to edit. Next, the current value of the
attribute is displayed, followed by a prompt for the new value. TIv can be used to confirm the
changed value. In the following example, the panning of Texture "a1" is assigned a fractional noise
(1/f) ParameterObject:

Example 5-24. Editing the panning of a TextureInstance

[PI(auto-muteHiConga)TI(a1)] :: tie
edit TI a1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): n
current panning: constant, 0.5
new value: n, 50, (cg, ud, 1, 3, .2), .5, 1
TI a1: parameter panning updated.

[PI(auto-muteHiConga)TI(a1)] :: tiv
TI: a1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 0005.0--20.006
(i)nstrument 64 (generalMidiPercussion: lowConga)
(t)ime range 05.0--20.0
(b)pm constant, 120
(r)hythm loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
(p)ath auto-lowConga

 Tutorial 5: Creating and Editing Textures

 57

 (E4)
 15.00(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude randomUniform, (constant, 0.6), (constant, 1)
pan(n)ing noise, 50, (cyclicGen, upDown, 1, 3, 0.2), (constant, 0.5),
 (constant, 1)
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

The noise ParameterObject has been given an embedded ParameterObject to control the gamma
argument. Notice that instead of entering "noise", "cyclicGen" or "upDown" the user can enter the
acronyms "n", "cg", and "ud". All ParameterObjects support automatic acronym expansion of
argument strings. This is an important and time-saving shortcut.

The previous example edited the panning of Texture "a1" such that it produces values within the
range of .5 to 1. This limits the spatial location of the sound to the upper half of the range (the
middle to right stereo position). To limit the spatial location of "b1" in a complementary fashion, the
Texture is edited to produce values within the range 0 to .5, corresponding to the lower half of the
range (the middle to left stereo position). In the example below, TIo is used to select "b1" before
entering the TIe command. TEv is then used to compare panning values for all Textures.

Example 5-25. Editing the panning of a TextureInstance

[PI(auto-muteHiConga)TI(a1)] :: tio b1
TI b1 now active.

[PI(auto-muteHiConga)TI(b1)] :: tie n wpd,e,15,.25,2.5,0,.5
TI b1: parameter panning updated.

[PI(auto-muteHiConga)TI(b1)] :: tiv
TI: b1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 000.0--20.16
(i)nstrument 62 (generalMidiPercussion: muteHiConga)
(t)ime range 00.0--20.0
(b)pm constant, 120
(r)hythm loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
(p)ath auto-muteHiConga
 (D4)
 20.00(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude randomUniform, (constant, 0.6), (constant, 1)
pan(n)ing wavePowerDown, event, (constant, 15), 0.25, 2.5, (constant,
 0), (constant, 0.5)
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event

 Tutorial 5: Creating and Editing Textures

 58

texture (d)ynamic none

[PI(auto-muteHiConga)TI(b1)] :: tev n
compare parameters: panning
{name,value,}
a1 noise, 50, (cyclicGen, upDown, 1, 3, 0.2), (constant, 0.5),
 (constant, 1)
b1 wavePowerDown, event, 15, 0.25, 2.5, (constant, 0),
 (constant, 0.5)

Notice that, in the above example, the user provided complete command-line arguments for the TIe
command. When entering a ParameterObject from the command-line, no spaces, and only commas,
can be used between ParameterObject arguments. As command-line arguments are space delimited
(and ParameterObject arguments are comma delimited), a ParameterObject on the command line
must be given without spaces between arguments. When providing a ParameterObject to a TIe
prompt, however, spaces may be provided.

5.10. Editing Rhythm ParameterObjects

Rhythm ParameterObjects are ParameterObjects specialized for generating time and rhythm
information. Many Rhythm ParameterObjects use Pulse object notations to define proportional
rhythms and reference a Texture's dynamic bpm attribute. Other ParameterObjects are independent
of bpm and can use raw timing information provided by one or more Generator ParameterObjects.

When using proportional rhythms, athenaCL uses Pulse objects. Pulses represent a ratio of duration
in relation to the duration of beat (specified in BPM and obtained from the Texture). For details on
Pulse notation, enter "help pulse":

Example 5-26. View Pulse and Rhythm help

[PI(auto-muteHiConga)TI(b1)] :: help pulse
{topic,documentation}
Pulse and Rhythm Pulses represent a duration value derived from ratio and a
 beat-duration. Beat duration is always obtained from a
 Texture. Pulses are noted as a list of three values: a
 divisor, a multiplier, and an accent. The divisor and
 multiplier must be positive integers greater than zero.
 Accent values must be between 0 and 1, where 0 is a measured
 silence and 1 is a fully sounding event. Accent values my
 alternatively be notated as + (for 1) and o (for 0). If a
 beat of a given duration is equal to a quarter note, a Pulse
 of (1,1,1) is a quarter note, equal in duration to a beat. A
 Pulse of (2,1,0) is an eighth-note rest: the beat is divided
 by two and then multiplied by one; the final zero designates
 a rest. A Pulse of (4,3,1) is a dotted eight note: the beat
 is divided by four (a sixteenth note) and then multiplied by
 three; the final one designates a sounding event. A Rhythm
 is designated as list of Pulses. For example: ((4,2,1),
 (4,2,1), (4,3,1)).

To edit the rhythms used by Texture b1, enter TIe followed by an "r" to access the rhythm attribute.
As before, the user is presented with the current value, then prompted for a new value. In the

 Tutorial 5: Creating and Editing Textures

 59

following example, the ParameterObject "loop" is examined first with the TPv, then the active
Texture is edited by providing an random walk over an expanded rhythm. Finally, the rhythm
attribute of all Textures is viewed with TEv.

Example 5-27. Editing Rhythm ParameterObjects with TIe

[PI(auto-muteHiConga)TI(b1)] :: tpv loop
Rhythm Generator ParameterObject
{name,documentation}
Loop loop, pulseList, selectionString
 Description: Deploys a fixed list of rhythms. Pulses are
 chosen from this list using the selector specified by the
 selectionString argument. Arguments: (1) name, (2) pulseList
 {a list of Pulse notations}, (3) selectionString
 {'randomChoice', 'randomWalk', 'randomPermutate',
 'orderedCyclic', 'orderedOscillate'}

[PI(auto-muteHiConga)TI(b1)] :: tie
edit TI b1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): r
current rhythm: loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
new value: l, ((4,1,1),(4,1,1),(4,2,1),(4,3,1),(4,5,1),(4,3,1)), rw
TI b1: parameter rhythm updated.

[PI(auto-muteHiConga)TI(b1)] :: tev r
compare parameters: rhythm
{name,value,}
a1 loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
b1 loop, ((4,1,+),(4,1,+),(4,2,+),(4,3,+),(4,5,+),(4,3,+)),
 randomWalk

Notice that, as with all ParameterObjects, abbreviations can be used for argument strings. The user
need only enter the string "l" to select the "loop" RhythmObject, and "rw" to select the
randomWalk selection method.

To edit Texture a1, the user must first make a1 the active texture with TIo. In the following
example, the user applies a zero-order Markov chain to generate pulses. The user fist consults the
documentation for ParameterObject markovPulse. For more information about Markov transition
strings (Ariza 2006), enter "help markov". After selecting and editing the Texture, the Rhythms are
compared with TEv:

Example 5-28. Editing Rhythm ParameterObjects with TIe

[PI(auto-muteHiConga)TI(b1)] :: tpv markovp
Rhythm Generator ParameterObject
{name,documentation}
markovPulse markovPulse, transitionString, parameterObject
 Description: Produces Pulse sequences by means of a Markov
 transition string specification and a dynamic transition
 order generator. The Markov transition string must define
 symbols that specify valid Pulses. Markov transition order
 is specified by a ParameterObject that produces values
 between 0 and the maximum order available in the Markov
 transition string. If generated-orders are greater than
 those available, the largest available transition order will

 Tutorial 5: Creating and Editing Textures

 60

 be used. Floating-point order values are treated as
 probabilistic weightings: for example, a transition of 1.5
 offers equal probability of first or second order selection.
 Arguments: (1) name, (2) transitionString, (3)
 parameterObject {order value}

[PI(auto-muteHiConga)TI(b1)] :: tio a1
TI a1 now active.

[PI(auto-muteHiConga)TI(a1)] :: tie
edit TI a1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): r
current rhythm: loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
new value: mp, a{8,1,1}b{4,3,1}c{4,2,1}d{4,5,1}:{a=1|b=3|c=4|d=7}, (c,0)
TI a1: parameter rhythm updated.

[PI(auto-muteHiConga)TI(a1)] :: tev r
command.py: command in debug mode.
compare parameters: rhythm
{name,value,}
a1 markovPulse,
 a{8,1,1}b{4,3,1}c{4,2,1}d{4,5,1}:{a=1|b=3|c=4|d=7},
 (constant, 0)
b1 loop, ((4,1,+),(4,1,+),(4,2,+),(4,3,+),(4,5,+),(4,3,+)),
 randomWalk

In the previous example, the user supplies four Pulses; each pulses is weighted such that the
shortest, (8,1,1), is the least frequent (weight of 1), and the longest, (4,5,1), is the most frequent
(weight of 7).

Using ELn, the current collection of Textures can be used to create an EventList, and ELh may be
used to audition the results. (For more information on using ELn, see Section 2.5.) Each time an
EventList is created, different sequences of rhythms will be generated: for Texture a1, these rhythms
will be the result of a zero-order Markov chain; for Texture b1, these rhythms will be the result of a
random walk on an ordered list of Pulses.

A final alternation can be made to the metric performance of these Textures. Using the TEe
command, both Texture's bpm attribute can be altered to cause a gradual accelerando from 120
BPM to 300 BPM. In the following example, the user applies a wavePowerUp ParameterObject to
the bpm attribute of both Textures by using the TEe command with complete command-line
arguments:

Example 5-29. Editing BPM with TEe

[PI(auto-muteHiConga)TI(a1)] :: tee b wpu,t,20,0,2,120,300
TI a1: parameter bpm updated.
TI b1: parameter bpm updated.

5.11. Editing Instruments and Altering EventMode

A Texture's instrument can be edited like other Texture attributes. The instruments available for
editing, just as when creating a Texture, are dependent on the active EventMode. To use

 Tutorial 5: Creating and Editing Textures

 61

instruments from another EventMode, the active EventMode must first be changed, and then the
Texture may be assigned an instrument.

In the following example, the user changes the EventMode to csoundNative with EMo, examines
the available instruments with EMi, and then assigns each Texture instrument 80:

Example 5-30. Changing EventMode and editing Texture instrument

[PI(auto-muteHiConga)TI(a1)] :: emo
select an EventMode mode: cn
EventMode mode set to: csoundNative.

[PI(auto-muteHiConga)TI(a1)] :: emi
csoundNative instruments:
{number,name}
 3 sineDrone
 4 sineUnitEnvelope
 5 sawDrone
 6 sawUnitEnvelope
 11 noiseWhite
 12 noisePitched
 13 noiseUnitEnvelope
 14 noiseTambourine
 15 noiseUnitEnvelopeBandpass
 16 noiseSahNoiseUnitEnvelope
 17 noiseSahNoiseUnitEnvelopeDistort
 20 fmBasic
 21 fmClarinet
 22 fmWoodDrum
 23 fmString
 30 samplerReverb
 31 samplerRaw
 32 samplerUnitEnvelope
 33 samplerUnitEnvelopeBandpass
 34 samplerUnitEnvelopeDistort
 35 samplerUnitEnvelopeParametric
 36 samplerSahNoiseUnitEnvelope
 40 vocodeNoiseSingle
 41 vocodeNoiseSingleGlissando
 42 vocodeNoiseQuadRemap
 43 vocodeNoiseQuadScale
 44 vocodeNoiseQuadScaleRemap
 45 vocodeNoiseOctScale
 46 vocodeNoiseOctScaleRemap
 47 vocodeNoiseBiOctScale
 48 vocodeNoiseTriOctScale
 50 guitarNylonNormal
 51 guitarNylonLegato
 52 guitarNylonHarmonic
 60 additiveBellBright
 61 additiveBellDark
 62 additiveBellClear
 70 synthRezzy
 71 synthWaveformVibrato
 72 synthVcoAudioEnvelopeSineQuad
 73 synthVcoAudioEnvelopeSquareQuad
 74 synthVcoDistort
 80 pluckTamHats
 81 pluckFormant
 82 pluckUnitEnvelope
 110 noiseAudioEnvelopeSineQuad

 Tutorial 5: Creating and Editing Textures

 62

 111 noiseAudioEnvelopeSquareQuad
 130 samplerAudioEnvelopeSineQuad
 131 samplerAudioEnvelopeSquareQuad
 132 samplerAudioFileEnvelopeFilter
 133 samplerAudioFileEnvelopeFollow
 140 vocodeSineOctScale
 141 vocodeSineOctScaleRemap
 142 vocodeSineBiOctScale
 143 vocodeSineTriOctScale
 144 vocodeSineQuadOctScale
 145 vocodeSinePentOctScale
 146 vocodeSineHexOctScale
 230 samplerVarispeed
 231 samplerVarispeedAudioSine
 232 samplerVarispeedReverb
 233 samplerVarispeedDistort
 234 samplerVarispeedSahNoiseDistort
 240 vocodeVcoOctScale
 241 vocodeVcoOctScaleRemap

[PI(auto-muteHiConga)TI(a1)] :: tie i 80
WARNING: new Texture auxiliary value 2
TI a1: parameter instrument updated.

[PI(auto-muteHiConga)TI(a1)] :: tio b1
TI b1 now active.

[PI(auto-muteHiConga)TI(b1)] :: tie i 80
WARNING: new Texture auxiliary value 2
TI b1: parameter instrument updated.

[PI(auto-muteHiConga)TI(b1)] :: tiv
command.py: command in debug mode.
TI: b1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 000.0--20.27
(i)nstrument 80 (csoundNative: pluckTamHats)
(t)ime range 00.0--20.0
(b)pm constant, 120
(r)hythm loop, ((4,1,+),(4,1,+),(4,2,+),(4,3,+),(4,5,+),(4,3,+)),
 randomWalk
(p)ath auto-muteHiConga
 (D4)
 20.00(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude randomUniform, (constant, 0.6), (constant, 1)
pan(n)ing wavePowerDown, event, (constant, 15), 0.25, 2.5, (constant,
 0), (constant, 0.5)
au(x)iliary
 x0 cyclicGen, up, 0.1, 0.9, 0.1
 x1 cyclicGen, down, 800, 16000, 200
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

Notice that, after editing the Texture, a warning is issued. This warning tells the user that additional
auxiliary ParameterObjects have been added. As a Csound-based instrument, each event of

 Tutorial 5: Creating and Editing Textures

 63

instrument 80 can accept two additional synthesis parameters. When viewing a Texture with this
instrument, as shown above, the auxiliary display shows two additional ParameterObjects, x0 and x1.
To learn what these auxiliary ParameterObjects control, the command TIdoc ma be used:

Example 5-31. Examining Texture documentation with TIdoc

[PI(auto-muteHiConga)TI(b1)] :: tidoc
TI: b1, TM: LineGroove
(i)nstrument 80 (csoundNative: pluckTamHats)
(b)pm (1) name, (2) value
(r)hythm (1) name, (2) pulseList {a list of Pulse notations}
local (f)ield (1) name, (2) value
local (o)ctave (1) name, (2) value
(a)mplitude (1) name, (2) min, (3) max
pan(n)ing (1) name, (2) stepString {'event', 'time'}, (3)
 parameterObject {secPerCycle}, (4) phase, (5) exponent, (6)
 min, (7) max
au(x)iliary
 x0 iparm (0-1)
 (1) name, (2) directionString {'upDown', 'downUp', 'up',
 'down'}, (3) min, (4) max, (5) increment
 x1 low-pass filter frequency
 (1) name, (2) directionString {'upDown', 'downUp', 'up',
 'down'}, (3) min, (4) max, (5) increment
texture (s)tatic
 s0 (1) name, (2) transpositionList, (3) timeDelay
 s1 (1) name, (2) selectionString {'randomChoice', 'randomWalk',
 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}
 s2 (1) name, (2) level {'set', 'event'}
 s3 (1) name, (2) level {'set', 'event'}
texture (d)ynamic none

Assuming that Csound is properly configured, a new set of EventLists can be created. As the user is
now in EventMode csoundNative and has csoundNative textures, both a Csound score and a MIDI
file are created. (See Section 2.6 for more information on working with Csound in athenaCL.) The
user may render the Csound score with ELr, and then audition the results with the ELh command.
(Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable directory.)

Example 5-32. Creating a new EventList with ELn

[PI(auto-muteHiConga)TI(b1)] :: eln /Volumes/xdisc/_scratch/a02.xml
 EventList a02 complete:
/Volumes/xdisc/_scratch/a02.bat
/Volumes/xdisc/_scratch/a02.orc
/Volumes/xdisc/_scratch/a02.sco
/Volumes/xdisc/_scratch/a02.mid
/Volumes/xdisc/_scratch/a02.xml

5.12. Displaying Texture Parameter Values

It is often useful to view the values produced by a Texture with a graphical diagram. The command
TImap provides a multi-parameter display of all raw values input from ParameterObjects into the
Texture. The values displayed by TImap are pre-TextureModule, meaning that they are the raw

 Tutorial 5: Creating and Editing Textures

 64

values produced by the ParameterObjects; the final parametric event values may be altered or
completely changed by the Texture's internal processing (its TextureModule) to produce different
arrangements of events. The TImap command thus only provides a partial representation of what a
Texture produces.

To view a TImap display, the user's graphic preferences must be properly set (see Example 1-11 for
more information). The command TImap displays the active Texture:

Example 5-33. Viewing a Texture with TImap

[PI(auto-muteHiConga)TI(b1)] :: timap
TImap (pre-TM) display complete.

 65

Chapter 6. Tutorial 6: Textures and Paths

This tutorial demonstrates basic use of Paths within Textures. This chapter is essential for
understanding the use of Paths in algorithmic music production.

6.1. Path Linking and Pitch Formation Redundancy

Textures link to Paths. Said another way, a Texture contains a reference to a Path object stored in
the AthenaObject. Numerous Textures can thus share the same Path; further, if a change is made to
this Path, all Textures will reference the newly updated version of the Path.

Events generated by a Texture can derive pitch values from a sequence of many transformations.
These transformations allow the user to work with Pitch materials in a wide variety of orientations
and parametric specifications. One or more Textures may share a single Path to derive pitch class or
pitch space pitch values. Each Texture has independent ParameterObject control of a local
transposition (local field) and a local register position (local octave), and with most TextureModules
this control can be configured to be applied once per event or once per Path set. Finally, each
Texture has a modular Temperament object to provide microtonal and dynamic final pitch tuning.
Ultimately, the TextureModule is responsible for interpreting this final pitch value into a linear,
horizontal, or other event arrangement.

For example, a Texture may be linked to simple Path consisting of a single pitch. This pitch will
serve as a referential pitch value for all pitch generation and transformation within the Texture. The
Texture's local field and local octave controls could then be used to produce a diverse collection of
Pitch values. Changing the single pitch of the Path would then provide global transposition of
Texture-based pitch processes. Alternatively, a Path may specify a complex sequence of chord
changes. Numerous Textures, linked to this single Path, could each apply different local octave
settings to distinguish register, and could each apply different microtonal tunings with local field and
Temperament settings.

6.2. Creating a Path with a Duration Fraction

First, the user creates a path consisting of three Multisets. As demonstrated in Chapter 3, there are
many ways to create and edit a Path. In the following example, the user creates a new path named q1
by simply providing pitch space values using conventional note names. The path is the then viewed
with the PIv command, and auditioned with the PIh command.

Example 6-1. Creating a Path with PIn

[PI()TI()] :: pin
name this PathInstance: q1
enter a pitch set, sieve, spectrum, or set-class: D2,G#3,A3,D3,E2,B2,A2
 SC 5-29A as (D2,G#3,A3,D3,E2,B2,A2)? (y, n, or cancel): y
 add another set? (y, n, or cancel): y
enter a pitch set, sieve, spectrum, or set-class: C4,C#4,F#3,G4,A3
 SC 5-19A as (C4,C#4,F#3,G4,A3)? (y, n, or cancel): y
 add another set? (y, n, or cancel): y

 Tutorial 6: Textures and Paths

 66

enter a pitch set, sieve, spectrum, or set-class: G#5,A4,D#4,E5
 SC 4-8 as (G#5,A4,D#4,E5)? (y, n, or cancel): y
 add another set? (y, n, or cancel): n
PI q1 added to PathInstances.

[PI(q1)TI()] :: piv
PI: q1, voiceType: none
psPath -22,-4,-3,-10,-20,-13,-15 0,1,-6,7,-3 20,9,3,16
 D2,G#3,A3,D3,E2,B2,A2 C4,C#4,F#3,G4,A3 G#5,A4,D#4,E5
pcsPath 2,8,9,2,4,11,9 0,1,6,7,9 8,9,3,4
scPath 5-29A 5-19A 4-8
durFraction 1(33%) 1(33%) 1(33%)
TI References: none.
PathVoices: none.

[PI(q1)TI()] :: pih
PI q1 hear with TM LineGroove complete.
(/Volumes/xdisc/_scratch/2005.06.01.08.29.01.mid)

As should be clear from the psPath display or the auditioned MIDI file, Path q1 covers a wide pitch
range, from E2 to G#5. Notice also that the "durFraction" specifies that each Multiset in the Path
has an equal duration weighting (1, or 33%). The durFraction of a Path is a means of providing a
proportional temporal weighting to each Multiset in the Path. When a Texture interprets a Path, it
partitions its duration into as many segments as there are Path Multisets, and each segment is given a
duration proportional to the Path durFraction. The command PIdf can be used to alter a Path's
duration weighting. The user must supply a list of values, either as percentages (floating point or
integer) or simply as numeric weightings. In the following example, after calling PIdf, the command
PIh is used to audition the results of an altered durFraction:

Example 6-2. Altering a Path's durFraction with PIdf

[PI(q1)TI()] :: pidf
edit PI q1
enter a list of duration fractions: 8,5,3
PI q1 edited.

[PI(q1)TI()] :: piv
PI: q1, voiceType: none
psPath -22,-4,-3,-10,-20,-13,-15 0,1,-6,7,-3 20,9,3,16
 D2,G#3,A3,D3,E2,B2,A2 C4,C#4,F#3,G4,A3 G#5,A4,D#4,E5
pcsPath 2,8,9,2,4,11,9 0,1,6,7,9 8,9,3,4
scPath 5-29A 5-19A 4-8
durFraction 8(50%) 5(31%) 3(19%)
TI References: none.
PathVoices: none.

[PI(q1)TI()] :: pih
PI q1 hear with TM LineGroove complete.
(/Volumes/xdisc/_scratch/2005.06.01.08.42.04.mid)

The PIv display shows that the Multisets are weighted such that the first is given 50%, the second
31%, and the last 19%. The MIDI file created with PIh should confirm this distribution.

 Tutorial 6: Textures and Paths

 67

6.3. Setting EventMode and Creating a Texture

As explained in Chapter 5, the athenaCL EventMode determines what instruments are available for
Texture creation. In the following example, the EventMode is set to midi, the TextureModule
LiteralVertical is selected, a new Texture is created with instrument 0, and the Texture is displayed
with TIv.

Example 6-3. Creating a Texture with TM LiteralVertical

[PI(q1)TI()] :: emo
select an EventMode mode: midi
EventMode mode set to: midi.

[PI(q1)TI()] :: tmls
TextureModules available:
{name,TIreferences}
 DroneArticulate 0
 DroneSustain 0
 HarmonicAssembly 0
 HarmonicShuffle 0
 InterpolateFill 0
 InterpolateLine 0
 IntervalExpansion 0
 LineCluster 0
 + LineGroove 0
 LiteralHorizontal 0
 LiteralVertical 0
 MonophonicOrnament 0
 TimeFill 0
 TimeSegment 0

[PI(q1)TI()] :: tmo lv
TextureModule LiteralVertical now active.

[PI(q1)TI()] :: tin a1 0
TI a1 created.

[PI(q1)TI(a1)] :: tiv
TI: a1, TM: LiteralVertical, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 000.0--20.16
(i)nstrument 0 (generalMidi: piano1)
(t)ime range 00.0--20.0
(b)pm constant, 120
(r)hythm loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
(p)ath q1
 (D2,G#3,A3,D3,E2,B2,A2),(C4,C#4,F#3,G4,A3),(G#5,A4,D#4,E5)
 10.00(s), 6.25(s), 3.75(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude constant, 0.9
pan(n)ing constant, 0.5
au(x)iliary none
texture (s)tatic
 s0 loopWithinSet, on
 s1 maxTimeOffset, 0.04
 s2 levelFieldPolyphonic, event
 s3 levelOctavePolyphonic, event
texture (d)ynamic none

 Tutorial 6: Textures and Paths

 68

Notice that the Texture's Path attribute is set to q1. In all cases, a Texture, when created, links to the
active Path. The Path a Texture links to can be edited later if necessary. Notice also that the Path
listing in the TIv display shows the pitches of the Path, as well as timings for each set: 10, 6.25, and
3.74 seconds respectively. These times are the result of the duration fraction applied to the Texture's
duration.

To hear this Texture, create an EventList as explained in Section 2.5. After using the ELn command,
the ELh command can be used to open the MIDI file. Notice that each chord lasts the appropriate
duration fraction of the total twenty-second duration of the Texture.

A few small edits to this Texture may make it more interesting. In the following example, both the
rhythm and amplitude are edited: the rhythm is given more Pulses and told to oscillate back and
forth along the specified series; the amplitude randomly selects from a list of four amplitudes.

Example 6-4. Editing a Texture

[PI(q1)TI(a1)] :: tie
edit TI a1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): r
current rhythm: loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
new value: l, ((4,1,1), (4,1,1), (4,3,0), (2,3,1), (3,2,1), (3,2,1)), oo
TI a1: parameter rhythm updated.

[PI(q1)TI(a1)] :: tie
edit TI a1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): a
current amplitude: constant, 0.9
new value: bg, rc, (.5,.6,.8,1)

Again, ELn and ELh can be used to create and audition the resulting musical structure.

6.4. PitchMode and PolyMode

PitchMode and PolyMode are Texture attributes that control the interpretation of the Path from
inside a TextureInstance.

PitchMode determines if a Path is represented to the Texture as a pitch space set, a pitch class set, or
set class. As a pitch space set, a Texture performs register information included in a Path The set
(1,11,24), performed as a pitch space set, would consist of a C-sharp, a B-natural a minor seventh
above the lowest pitch, and C-natural an octave and major-seventh above the lowest pitch. The set
(1,11,24) performed as a pitch-class set, would be interpreted as the set (1,11,0): register information
is removed, while pitch class is retained. The set (1,11,24), performed as a set-class, would be
interpreted as the set (0,1,2): register and pitch-class are removed, while the normal-form of the
set-class is retained.

In the following example, a new Texture is created from TextureModule LineGroove. First, the TM
must be selected with the TMo command. Next, a new Texture named b1 is created with the TIn
command. The TImode command can be used to edit many Texture options. In this example,
pitchMode is selected and "pcs," for pitch class space, is selected. Finally, the Texture is given a

 Tutorial 6: Textures and Paths

 69

more interesting rhythm, by use of the Rhythm ParameterObject markovPulse, and is panned to the
right with a constant value:

Example 6-5. Editing PitchMode of a TextureInstance

[PI(q1)TI(a1)] :: tmo lg
TextureModule LineGroove now active.

[PI(q1)TI(a1)] :: tin b1 0
TI b1 created.

[PI(q1)TI(b1)] :: timode
edit TI b1: Pitch, Polyphony, Silence, or PostMap Mode? (p, y, s, m): p
 current Pitch Mode: pitchSpace. enter new mode (sc, pcs, ps): pcs
Pitch Mode changed to pitchClass

[PI(q1)TI(b1)] :: tie
edit TI b1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): r
current rhythm: loop, ((4,1,+),(4,1,+),(4,5,+)), orderedCyclic
new value: mp, a{6,1,1}b{3,2,0}c{3,5,1}:{a=5|b=3|c=2}, (c,0)
TI b1: parameter rhythm updated.

[PI(q1)TI(b1)] :: tie n c,.9
TI b1: parameter panning updated.

[PI(q1)TI(b1)] :: tiv
TI: b1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchClass, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 00.0--20.0
(i)nstrument 0 (generalMidi: piano1)
(t)ime range 00.0--20.0
(b)pm constant, 120
(r)hythm markovPulse, a{6,1,1}b{3,2,0}c{3,5,1}:{a=5|b=3|c=2},
 (constant, 0)
(p)ath q1
 (D2,G#3,A3,D3,E2,B2,A2),(C4,C#4,F#3,G4,A3),(G#5,A4,D#4,E5)
 10.00(s), 6.25(s), 3.75(s)
local (f)ield constant, 0
local (o)ctave constant, 0
(a)mplitude constant, 0.9
pan(n)ing constant, 0.9
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

Because Path q1 is still active, this new Texture is assigned the same Path as Texture a1. After
setting the Texture's pitchMode to pitchClassSpace, however, Texture b1 will receive only pitch
class values from Path q1: all register information, as performed in Texture a1, is stripped. By
creating a new EventList with ELn and auditioning the results, it should be clear that both Textures
share the same pitch information and duration weighting. Notice that the faster-moving single-note
line Texture b1, however, stays within a single register. When a Texture is in pitchClassSpace Pitch
mode, all pitches from a Path are interpreted within the octave from C4 to C5.

 Tutorial 6: Textures and Paths

 70

PolyMode determines if a Path is to be interpreted as set or as a part-voiced vertical. The value
PolyMode is either "set" or "part". The default setting is "set" and can be used with any Path; "parts"
can only be used if a Path has equal numbers of elements in each set. For more information on
using PathVoices see Chapter 4. PolyMode is not yet implemented by a TextureModule.

6.5. Editing Local Octave

With a Texture's local field and local octave controls, ParameterObjects can be used to alter the
pitches derived from a Path. In most TextureModules, the transformation offered by field and
octave control can be applied either once per Multiset, or once per event. This is set by editing the
TextureStatic options levelField and levelOctave.

In the following example, the local octave attribute of Texture b1 is edited such that octaves are
chosen in order from a list of possibilities, creating a sequence of octave transpositions. An octave
value of 0 means no transposition; an octave of -2 means a transposition two octaves down.

Example 6-6. Editing Local Octave

[PI(q1)TI(b1)] :: tie
edit TI b1
which parameter? (i,t,b,r,p,f,o,a,n,x,s): o
current local octave: constant, 0
new value: bg, oc, [-3,-2,2,-1]
TI b1: parameter local octave updated.

[PI(q1)TI(b1)] :: tiv
TI: b1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchClass, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 000.0--20.08
(i)nstrument 0 (generalMidi: piano1)
(t)ime range 00.0--20.0
(b)pm constant, 120
(r)hythm markovPulse, a{6,1,1}b{3,2,0}c{3,5,1}:{a=5|b=3|c=2},
 (constant, 0)
(p)ath q1
 (D2,G#3,A3,D3,E2,B2,A2),(C4,C#4,F#3,G4,A3),(G#5,A4,D#4,E5)
 10.00(s), 6.25(s), 3.75(s)
local (f)ield constant, 0
local (o)ctave basketGen, orderedCyclic, (-3,-2,2,-1)
(a)mplitude constant, 0.9
pan(n)ing constant, 0.9
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

Listening to the results of the previous edit (with ELn and ELh), it should be clear that a new octave
is applied to each event of Texture b1, creating an regular oscillation of register independent of Path
Multiset.

 Tutorial 6: Textures and Paths

 71

Alternatively, the user may desire local octave and field controls to only be applied once per
Multiset. This option can be set for TextureModule LineGroove by editing the TextureStatic
parameter "levelOctaveMonophonic." In the following example, the user examines the
documentation of ParameterObject levelOctaveMonophonic, and a copy of Texture b1 is created
named b2. Next, this Texture's panning is edited, and then the TextureStatic option
levelOctaveMonophonic is changed from "event" to "set":

Example 6-7. Editing TextureStatic

[PI(q1)TI(b1)] :: tpv leveloctave
Texture Static ParameterObject
{name,documentation}
levelOctaveMonophonic levelOctaveMonophonic, level
 Description: Toggle between selection of local octave
 (transposition) values per set of the Texture's Path, or
 per event. Arguments: (1) name, (2) level {'set', 'event'}
levelOctavePolyphonic levelOctavePolyphonic, level
 Description: Toggle between selection of local octave
 (transposition) values per set of the Texture's Path, per
 event, or per polyphonic voice event. Arguments: (1) name,
 (2) level {'set', 'event', 'voice'}

[PI(q1)TI(b1)] :: ticp b1 b2
TextureInstance b2 created.

[PI(q1)TI(b2)] :: tie
edit TI b2
which parameter? (i,t,b,r,p,f,o,a,n,x,s): s
select a static texture parameter to edit, from s0 to s3: 3
current value for e3: event
new value: set
TI b2: parameter texture static updated.

[PI(q1)TI(b2)] :: tie
edit TI b2
which parameter? (i,t,b,r,p,f,o,a,n,x,s): n
current panning: constant, 0.9
new value: c, .1
TI b2: parameter panning updated.

Listening to a new EventList created with these three Textures (with ELn and ELh), it should be
clear that all pitch information is synchronized by use of a common Path. In the case of Texture a1,
the pitches are taken directly from the Path with register. In the case of Texture b1 (right channel),
the Path pitches, without register, are transposed into various registers for each event. In the case of
Texture b2 (left channel), the Path pitches, also without register, are transposed into various registers
only once per Multiset.

6.6. Editing Local Field and Temperament

Within athenaCL, any pitch can be tuned to microtonal specifications, allowing the user to apply
non-equal tempered frequencies to each pitch in either a fixed relationship or a dynamic,
algorithmically generated manner. Within athenaCL Textures there are two ways to provide
microtonal tunings. First, pitches can be transposed and tuned with any ParameterObject by using

 Tutorial 6: Textures and Paths

 72

the Texture local field attribute. Each integer represents a half-step transposition, and floating point
values can provide any detail of microtonal specification. Second, each Texture can have a different
Temperament, or tuning system based on either pitch class, pitch space, or algorithmic specification.
The command TTls allows the user to list the available TextureTemperaments.

Example 6-8. Listing all TextureTemperaments

[PI(q1)TI(b2)] :: ttls
TextureTemperaments available for TI b2:
{name,tunning}
 + TwelveEqual
 Pythagorean
 Just
 MeanTone
 Split24Upper
 Split24Lower
 Interleave24Even
 Interleave24Odd
 NoiseLight
 NoiseMedium
 NoiseHeavy

The temperament "TwelveEqual" is the active Temperament for current Texture b2. This
temperament produces equal-tempered frequencies. To select a different temperament for the active
Texture, enter the command TTo. In the example below the user selects the temperament
NoiseLight for Textures b2 and Texture b1, and then selects the temperament NoiseMedium for
Texture a1. In the last case, two command are given on the some command line. As is the UNIX
convention, the commands and arguments are separated by a semicolon:

Example 6-9. Selecting Texture Temperament with TTo

[PI(q1)TI(b2)] :: tto
select a TextureTemperament for TI b2: (name or number 1-11): nl
TT NoiseLight now active for TI b2.

[PI(q1)TI(b2)] :: tio b1
TI b1 now active.

[PI(q1)TI(b1)] :: tto nl
TT NoiseLight now active for TI b1.

[PI(q1)TI(b1)] :: tio a1; tto nm
TI a1 now active.

TT NoiseMedium now active for TI a1.

[PI(q1)TI(a1)] ::

Not all EventOutputs can perform microtones. MIDI files, for example, cannot store microtonal
specifications of pitch. Though such pitches will be generated within athenaCL, they will be rounded
when written to the MIDI file. EventOutputs for Csound, however, can handle microtones.

 73

Chapter 7. Tutorial 7: Textures and Clones

This tutorial demonstrates basic Clone creation, configuration, and deployment in musical
structures. Clones provide an additional layer of algorithmic music production, processing the literal
output of Textures.

7.1. Introduction to Clones

A TextureClone (or a Clone or TC) is a musical part made from transformations of the exact events
produced by a single Texture. Said another way, a Clone is not a copy of a Texture, but a
transformed copy of the events produced by a Texture. Textures are not static entities, but
algorithmic instructions that are "performed" each time an EventList is created. In order to capture
and process the events of a single Texture, one or more Clones can be created in association with a
single Texture.

Clones use Filter ParameterObjects to parametrically modify events produced from the parent
Texture. Clones can be used to achieve a variety of musical structures. An echo is a simple example:
by shifting the start time of events, a Clone can be used to create a time-shifted duplicate of a
Texture's events. Clones can be used with a Texture to produce transformed motivic quotations of
events, or can be used to thicken or harmonize a Texture with itself, for instance by filtering event
pitch values.

Clones are also capable of non-parametric transformations that use CloneStatic ParameterObjects.
For example a Clone, using a retrograde transformation, can reverse the events of a Texture.

7.2. Creating and Editing Clones

First, using EventMode midi and instrument 0, a Texture with a descending melodic arc will be
created. The Texture's time range is set from 0 to 6. The Texture's rhythm employs the
ParameterObject convertSecond and uses a standard Generator ParameterObject to create raw
duration values in seconds. Finally, This Texture, using a Path only as a reference pitch, employs the
Texture's local field to provide harmonic shape.

Example 7-1. Creating a Texture

[PI()TI()] :: emo m
EventMode mode set to: midi.

[PI()TI()] :: tin a1 0
TI a1 created.

[PI(auto)TI(a1)] :: tie t 0,6
TI a1: parameter time range updated.

[PI(auto)TI(a1)] :: tie r cs,(wpd,e,16,2,0,.6,.02)
TI a1: parameter rhythm updated.

[PI(auto)TI(a1)] :: tie f wpd,e,16,2,0,12,-24
TI a1: parameter local field updated.

 Tutorial 7: Textures and Clones

 74

[PI(auto)TI(a1)] :: tiv
TI: a1, TM: LineGroove, TC: 0, TT: TwelveEqual
pitchMode: pitchSpace, polyMode: set, silenceMode: off, postMapMode: on
midiProgram: piano1
 status: +, duration: 00.0--6.41
(i)nstrument 0 (generalMidi: piano1)
(t)ime range 0.0--6.0
(b)pm constant, 120
(r)hythm convertSecond, (wavePowerDown, event, (constant, 16), 2, 0,
 (constant, 0.6), (constant, 0.02))
(p)ath auto
 (C4)
 6.00(s)
local (f)ield wavePowerDown, event, (constant, 16), 2, 0, (constant, 12),
 (constant, -24)
local (o)ctave constant, 0
(a)mplitude constant, 0.9
pan(n)ing constant, 0.5
au(x)iliary none
texture (s)tatic
 s0 parallelMotionList, (), 0.0
 s1 pitchSelectorControl, randomPermutate
 s2 levelFieldMonophonic, event
 s3 levelOctaveMonophonic, event
texture (d)ynamic none

After creating a Texture, a Clone can be created with the command TCn, for TextureClone New.
The user is prompted to enter the name of the new Clone. By default, the Filter ParameterObject
filterAdd is applied to the start time of all events with a duration equal to one Pulse. As with
Textures, a Clone can be displayed with the TCv command. After displaying the Clone, the user
examines the documentation for ParameterObject filterAdd:

Example 7-2. Creating and Viewing a Clone with TCn and TCv

[PI(auto)TI(a1)] :: tcn
name this TextureClone: w1
TC w1 created.

[PI(auto)TI(a1)] :: tcv
TC: w1, TI: a1
 status: +, duration: 00.5--6.91
(t)ime filterAdd, (loop, ((1,1,+)), orderedCyclic)
s(u)stain bypass
a(c)cent bypass
local (f)ield bypass
local (o)ctave bypass
(a)mplitude bypass
pan(n)ing bypass
au(x)iliary none
clone (s)tatic
 s0 timeReferenceSource, textureTime
 s1 retrogradeMethodToggle, off

[PI(auto)TI(a1)] :: tpv fa
Filter ParameterObject
{name,documentation}
FilterAdd filterAdd, parameterObject
 Description: Each value is added to the value produced by
 the ParameterObject. Arguments: (1) name, (2)

 Tutorial 7: Textures and Clones

 75

 parameterObject {operator value generator}

The Filter ParameterObject bypass is the default for most Clone attributes. This ParameterObject
simply passes values through to the Clone unaltered.

Upon creating a new EventList and auditioning the results (with ELn and ELh, see Section 2.5 for
more information), the descending melodic line of a1 can be heard echoed by Clone w1. In the
following example, another Clone is created called w2. This Clone is then edited to have a time value
that, rather than shifted by a constant, is scaled by a value that oscillates between 1 and 2. The
Clone's local field filter is also set to transpose the Texture's pitches seven half-steps down. The
procedure for editing Clone ParameterObjects is similar to that for editing Textures, except for that
only Filter ParameterObjects can be provided.

Example 7-3. Editing a Clone with TCe

[PI(auto)TI(a1)] :: tcn
name this TextureClone: w2
TC w2 created.

[PI(auto)TI(a1)] :: tpv fma
Filter ParameterObject
{name,documentation}
FilterMultiplyAnchor filterMultiplyAnchor, anchorString, parameterObject
 Description: All input values are first shifted so that the
 position specified by anchor is zero; then each value is
 multiplied by the value produced by the parameterObject.
 All values are then re-shifted so that zero returns to its
 former position. Arguments: (1) name, (2) anchorString
 {'lower', 'upper', 'average', 'median'}, (3)
 parameterObject {operator value generator}

[PI(auto)TI(a1)] :: tce
edit TC a1
which parameter? (t,u,c,f,o,a,n,x,s): t
current time: filterAdd, (loop, ((1,1,+)), orderedCyclic)
new value: fma, l, (ws, e, 8, 0, 1, 2)
TC w2: parameter time updated.

[PI(auto)TI(a1)] :: tce
edit TC a1
which parameter? (t,u,c,f,o,a,n,x,s): f
current local field: bypass
new value: fa, (c, -7)
TC w2: parameter local field updated.

[PI(auto)TI(a1)] :: tcv
TC: w2, TI: a1
 status: +, duration: 000.0--11.41
(t)ime filterMultiplyAnchor, lower, (waveSine, event, 8, 0,
 (constant, 1), (constant, 2))
s(u)stain bypass
a(c)cent bypass
local (f)ield filterAdd, (constant, -7)
local (o)ctave bypass
(a)mplitude bypass
pan(n)ing bypass
au(x)iliary none
clone (s)tatic

 Tutorial 7: Textures and Clones

 76

 s0 timeReferenceSource, textureTime
 s1 retrogradeMethodToggle, off

As with Textures and other objects in athenaCL, Clones can be listed with the TCls command, and
the active Clone can be selected with the TCo command. Further, upon examining the parent
Texture with TIls, notice that two Clones are now displayed under the TC heading:

Example 7-4. Listing and Selecting Clones with TCls and TCo

[PI(auto)TI(a1)] :: tcls
TextureClones of TI a1
{name,status,duration}
 + w2 + 000.0--11.41
 w1 + 00.5--6.91

[PI(auto)TI(a1)] :: tco w1
TC w1 of TI a1 now active.

[PI(auto)TI(a1)] :: tils
TextureInstances available:
{name,status,TM,PI,instrument,time,TC}
 + a1 + LineGroove auto 0 0.0--6.0 2

Clones features special transformations selected by CloneStatic ParameterObjects. In the following
example, a new Clone is created named w3. The CloneStatic ParameterObject
retrogradeMethodToggle is set to timeInverse, causing the Clone to create a retrograde presentation
of the Texture's events. Additionally, the Clone's time attributes is set with a filterMultuplyAnchor
ParameterObject and the Clone's field attributes is set with a filterAdd ParameterObject:

Example 7-5. Creating and Editing Clones

[PI(auto)TI(a1)] :: tpv retrograde
Clone Static ParameterObject
{name,documentation}
retrogradeMethodToggle retrogradeMethodToggle, name
 Description: Selects type of retrograde transformation
 applied to Texture. Arguments: (1) name, (2) name
 {'timeInverse', 'eventInverse', 'off'}

[PI(auto)TI(a1)] :: tcn
name this TextureClone: w3
TC w3 created.

[PI(auto)TI(a1)] :: tce
edit TC a1
which parameter? (t,u,c,f,o,a,n,x,s): s
select a static clone parameter to edit, from s0 to s1: 1
current value for c1: off
new value: timeinverse
TC w3: parameter clone static updated.

[PI(auto)TI(a1)] :: tce t fma,l,(c,2.5)
TC w3: parameter time updated.

[PI(auto)TI(a1)] :: tce f fa,(c,7)

 Tutorial 7: Textures and Clones

 77

TC w3: parameter local field updated.

The TEmap command displays all Textures as well as all Texture Clones. Texture Clones appear
under their parent Clone. Textures and Clones, further, can be muted independently.

Example 7-6. Viewing Textures and Clones with TEmap

[PI(auto)TI(a1)] :: temap
TextureEnsemble Map:
15.22s | . | . | . | . |
a1 _________________________
 w3 ..
 w2 ...
 w1

 78

Chapter 8. Tutorial 8: Tools for Pitch Analysis

This tutorial demonstrates tools within athenaCL for analyzing and modeling pitch groups.

8.1. Inspecting the Set Class Library

The Set Class Library consists data on all chord-types, or Tn set classes. For each set, the Forte
number (Forte 1973), normal form, Z-relation, Morris Invariance vector (Morris 1987), Forte
interval class vector, and all n-class vectors (in both Tn and Tn/I classifications) are available (Straus
1990). Further, contextual data such as common chord-names is also available.

The SCv command provides access to this information. SCv also functions as set translator, easily
converting any set, sieve, or Forte-number to its appropriate normal form. Sets can be entered as
Forte-numbers, pitch-name sets (with "#" as sharps and "$" as flats), pitch class sets, or pitch space
sets. Whenever sets are used in athenaCL, they are treated simultaneously as ordered collections with
redundancies, and as unordered collections without redundancies. Either the user or the context
determines which form of the set is used. The set below is entered into SCv first as a pitch-name set,
then as a Forte number:

Example 8-1. Viewing a set by pitch name or Forte name

[PI()TI()] :: scv
enter a pitch set, sieve, or set-class: c#, f, e, a, g#, c#, c, a
 SC 6-20 as (C#4,F4,E4,A4,G#4,C#4,C4,A4)? (y, n, or cancel): y
SC(6-20), PCS(1,5,4,9,8,1,0,9), T(0), Z(none), mode(TnI)
Normal Form: (0,1,4,5,8,9)
Invariance Vector: (3,3,3,3,3,3,3,3)
Interval Class Vector: (3,0,3,6,3,0)
References:
 name E all combinatorial (P2, P6, P10, I3, I7, R4, R8,
 RI1, RI5, RI9), Messiaen's truncated mode 3, Genus
 tertium, third-order all combinatorial
n-Class Vectors:
3CV(TnI)
 0,0,6,6,0,0,0,0,0,0 - 6,2
4CV(TnI)
 0,0,0,0,0,0,3,0,0,0 - 0,0,0,0,0,0,3,0,6,3
 0,0,0,0,0,0,0,0,0 -
5CV(TnI)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0
 6,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0
6CV(TnI)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,1
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0
 0,0,0,0,0,0,0,0,0,0 -

[PI()TI()] :: scv 6-20
SC(6-20), PCS(0,1,4,5,8,9), T(0), Z(none), mode(TnI)
Normal Form: (0,1,4,5,8,9)
Invariance Vector: (3,3,3,3,3,3,3,3)
Interval Class Vector: (3,0,3,6,3,0)
References:
 name E all combinatorial (P2, P6, P10, I3, I7, R4, R8,
 RI1, RI5, RI9), Messiaen's truncated mode 3, Genus
 tertium, third-order all combinatorial

 Tutorial 8: Tools for Pitch Analysis

 79

n-Class Vectors:
3CV(TnI)
 0,0,6,6,0,0,0,0,0,0 - 6,2
4CV(TnI)
 0,0,0,0,0,0,3,0,0,0 - 0,0,0,0,0,0,3,0,6,3
 0,0,0,0,0,0,0,0,0 -
5CV(TnI)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0
 6,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0
6CV(TnI)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,1
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0
 0,0,0,0,0,0,0,0,0,0 -

The first line of the SCv display gives the Forte number, the pitch-class set, the transposition level,
the Z-related set (if it exists), and the global Tn/I mode. The following lines give the normal form,
Morris invariance vector, and Forte interval class vector. Following the heading "References" is any
contextual data known about this set. Here we see that this set is also known as an "E all
combinatorial" set, and "Messiaen's truncated mode 3". Following this is a display for all of the set's
n-class vectors. N-class vectors display the number and kind of all subsets. Each register
corresponds to sub-set. The last vector, "6CV" (for cardinality-6 class vector), shows a value of 1 at
the 20th register position. This tells us that only one hexachord is embedded in this set, hexachord
6-20, the set itself. The other vectors tell the same information for pentachords, tetrachords, and
trichords.

The number of discrete sets for any cardinality is dependent on the whether or not an inverted
chord is counted as unique. When an inversion is counter as unique, the system is said to be in Tn
classification. When not, the system is in Tn/I classification (Straus 1990). There are considerably
more set-classes under Tn classification, though not every set has an inversion. All set class
processing in athenaCL is switchable between Tn and Tn/I classifications. To switch classifications,
enter the command SCmode.

Example 8-2. Switching SetClass mode from Tn/I to Tn

[PI()TI()] :: scmode
SC classification set to Tn.

When in Tn mode there are more unique sets then Tn/I mode. Thus, when examining sub-set
vectors, there are more registers for each cardinality. In the following example the set used above is
displayed again with SCv, though this time in Tn mode. Notice that there are more registers for each
of the n-class vectors:

Example 8-3. Viewing Tn subset data

[PI()TI()] :: scv 0, 3, 4, 7, 8, 11
SC(6-20), PCS(0,3,4,7,8,11), T(3), Z(none), mode(Tn)
Normal Form: (0,1,4,5,8,9)
Invariance Vector: (3,3,3,3,3,3,3,3)
Interval Class Vector: (3,0,3,6,3,0)
References:
 name E all combinatorial (P2, P6, P10, I3, I7, R4, R8,

 Tutorial 8: Tools for Pitch Analysis

 80

 RI1, RI5, RI9), Messiaen's truncated mode 3, Genus
 tertium, third-order all combinatorial
n-Class Vectors:
3CV(Tn)
 0,0,0,3,3,3,3,0,0,0 - 0,0,0,0,0,0,3,3,2
4CV(Tn)
 0,0,0,0,0,0,0,0,0,3 - 0,0,0,0,0,0,0,0,0,0
 0,0,0,0,0,3,0,0,3,3 - 3,0,0,0,0,0,0,0,0,0
 0,0,0 -
5CV(Tn)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,3,3,0,0,0
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0
 0,0,0,0,0,0 -
6CV(Tn)
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0
 0,0,0,0,0,0,0,0,0,0 - 0,0,1,0,0,0,0,0,0,0
 0,0,0,0,0,0,0,0,0,0 - 0,0,0,0,0,0,0,0,0,0

8.2. Searching the Set Class Library for Names, Z-relations, and Super-Sets

The SCf command, for SetClass Find, allows the user to search the entire set class library. There are
three kinds of searches available: search by name, by Z-relation, and by super-set.

For example, to search for all sets that have the word "blues" in their known titles, enter the
command SCf, select "n" for search by name, and enter a search string:

Example 8-4. Searching for a set by name

[PI()TI()] :: scf
select a find method: name, z-relation, or super-sets? (n, z, s): n
enter a search string: blues
found 9 sets with matching names:
{set,value}
9-7A nonatonic blues
8-26 blues, Spanish phrygian
8-23 Greek, blues, quartal octachord, diatonic octad
8-13A blues octatonic
8-11B blues octatonic
7-27B modified blues
6-47B blues scale
5-35 major pentatonic, black-key scale, blues pentatonic,
 slendro, quartal pentamirror
5-4A blues pentacluster

To search the set class library for all sets with a Z relation, enter SCf followed by "z". This displays
each set and its corresponding Z-related pair.

Example 8-5. Viewing all z-related pairs

[PI()TI()] :: scf
select a find method: name, z-relation, or super-sets? (n, z, s): z
found 46 z-related sets:
{set,value}
4-15A 4-29A

 Tutorial 8: Tools for Pitch Analysis

 81

4-29A 4-15A
5-12 5-36A
5-17 5-37
5-18A 5-38A
5-36A 5-12
5-37 5-17
5-38A 5-18A
6-3A 6-36A
6-4 6-37
6-6 6-38
6-10A 6-39A
6-11A 6-40A
6-12A 6-41A
6-13 6-42
6-17A 6-43A
6-19A 6-44A
6-23 6-45
6-24A 6-46A
6-25A 6-47A
6-26 6-48
6-28 6-49
6-29 6-50
6-36A 6-3A
6-37 6-4
6-38 6-6
6-39A 6-10A
6-40A 6-11A
6-41A 6-12A
6-42 6-13
6-43A 6-17A
6-44A 6-19A
6-45 6-23
6-46A 6-24A
6-47A 6-25A
6-48 6-26
6-49 6-28
6-50 6-29
7-12 7-36A
7-17 7-37
7-18A 7-38A
7-36A 7-12
7-37 7-17
7-38A 7-18A
8-15A 8-29A
8-29A 8-15A

The SCf command can also search for super-sets, all sets with a particular subset. That is, given a
set, SCf can find all sets that have this set as a subset, and produce a ranked list of results. In the
example below the user finds all sets the have set 6-40 as a sub-set. The value given for each set is
the number of times the sub-set is embedded.

Example 8-6. Viewing superset data

[PI()TI()] :: scf
select a find method: name, z-relation, or super-sets? (n, z, s): s
select a sub-set to search...
enter a pitch set, sieve, or set-class: 6-40
 SC 6-40A as (C4,C#4,D4,D#4,F4,G#4)? (y, n, or cancel): y
found 41 super-sets containing 6-40A:
{set,value}

 Tutorial 8: Tools for Pitch Analysis

 82

12-1 24
11-1 12
10-3 6
10-2 6
10-5 6
10-1 6
10-4 4
10-6 4
9-9 4
9-7A 3
9-2A 3
9-3A 3
9-1 2
8-23 2
8-3 2
9-6 2
9-5A 2
8-6 2
8-7 2
9-4A 2
9-10 2
8-10 2
8-11A 1
8-13A 1
8-12A 1
8-14A 1
7-14A 1
7-23A 1
8-15A 1
8-16A 1
9-8A 1
8-18A 1
7-10A 1
8-2A 1
7-18A 1
8-22A 1
6-40A 1
7-3A 1
8-4A 1
7-36A 1
9-11A 1

8.3. Comparing and Searching Similarity Measures

athenaCL contains numerous set-class similarity measures from the academic literature (Rahn 1980;
Lewin 1987; Castren 1994). These similarity measures, as ways of evaluating set relations, are called
SetMeasures.

The command SCcm allows the user to compare the similarity values of every similarity measure for
any two sets. After entering SCcm, the user must provide the two sets to compare.

Example 8-7. Comparing two sets with all set class similarity measures

[PI()TI()] :: sccm
select SC X:
enter a pitch set, sieve, or set-class: 6-40
 SC 6-40A as (C4,C#4,D4,D#4,F4,G#4)? (y, n, or cancel): y
select SC Y:
enter a pitch set, sieve, or set-class: c, d, e, f, g, a

 Tutorial 8: Tools for Pitch Analysis

 83

 SC 6-32 as (C4,D4,E4,F4,G4,A4)? (y, n, or cancel): y
 SC similarity: 6-40A and 6-32
 Tn classification
{name,value,graph,range}
ASIM 0.20 +......... 1--0
ATMEMB 0.68 +............... 0--1
Ak 0.80 +......... 0--1
COST 0.91 ...+.... 0--1
IcVD1 0.40 +......... 2--0
IcVD2 0.43 +.............. 1.41--0
IcVSIM 0.82 +.......... 3.64--0
K 12 +..................................... 0--55
MEMBn 29.00 +.................................... 0--121
REL 0.65 +................ 0--1
SIM 6.00 ...+.... 65--0
TMEMB 78.00 +... 0--6118
T%Rel 50.83 +........................ 100--0
%Rel 20.00 +......... 100--0
SI 3.16 +........... 8.49--1.41
sf 3.00 +................ 9--0
R0 0 +
R1 0 +
R2 0 +

The SCcm display provides the name of the measure, the value obtained from this comparison, and
a graph of a normalized percentage of that measure's similarity range. Following the graph is the
range of the measure, from least similar to most similar.

Single similarity measures, SetMeasures, can be selected for more extensive investigation. To see a
list of available SetMeasures, enter SMls. To select a SetMeasure, enter SMo. Selecting SetMeasures
is covered in greater detail in section 2.10. Here the user first browses the list of measures, and then
selects "REL":

Example 8-8. Listing and selecting set class similarity measures

[PI()TI()] :: smls
SetMeasures available:
{name,reference,distinction}
 + ASIM Morris TnI
 ATMEMB Rahn Tn
 Ak Rahn TnI
 COST Rogers TnI
 IcVD1 Rogers TnI
 IcVD2 Rogers TnI
 IcVSIM Isaacson TnI
 K Morris TnI
 R2 Forte TnI
 REL Lewin Tn
 SIM Morris TnI
 TMEMB Rahn Tn
 TpRel Castren Tn

[PI()TI()] :: smo rel
SetMeasure REL now active.

 Tutorial 8: Tools for Pitch Analysis

 84

The command SCs, for SetClass Search, like many commands within athenaCL, uses the active
SetMeasure to process sets. Using the selected similarity measure, and given a set, SCs searches for
sets with a similarity value within a user-provided similarity percentage range. Because similarity
measures have a wide variety of ranges, percentage ranges between 0 and 1 are always used.

In the example below the user, having selected REL above, searches for sets that have a similarity
value with set 6-40 corresponding to the top twenty-five percent of the REL range. Eleven sets are
found, as shown below:

Example 8-9. Searching set classes by similarity range

[PI()TI()] :: scs
select a SC:
enter a pitch set, sieve, or set-class: 6-40
 SC 6-40A as (0,1,2,3,5,8)? (y, n, or cancel): y
enter a similarity percentage range: .75, 1
Set 6-40A: Lewin REL search
 TnI classification
similarity percentage range: (0.75, 1.00)
total found: 38
{set,value}
6-40A 1.00
7-23A 0.86
7-10A 0.86
7-14A 0.86
7-3A 0.85
7-36A 0.85
7-18A 0.83
6-46A 0.82
6-36A 0.82
6-9A 0.81
5-36A 0.81
6-39A 0.81
7-29A 0.80
6-25A 0.80
8-23 0.79
5-38A 0.79
8-10 0.79
6-47A 0.78
8-3 0.78
6-11A 0.78
5-5A 0.78
7-2A 0.77
7-11A 0.77
5-25A 0.77
6-12A 0.77
7-12 0.76
6-42 0.76
8-6 0.76
6-18A 0.76
8-13A 0.76
8-7 0.76
8-14A 0.76
5-27A 0.76
7-4A 0.75
6-8 0.75
8-11A 0.75
8-4A 0.75
6-41A 0.75

 Tutorial 8: Tools for Pitch Analysis

 85

In athenaCL, Paths are ordered collections of sets. Using Paths allows the user additional control
and analysis of pitch materials, not only in terms of sets, but also in terms of voice-leadings
(mappings) between those sets. For more information on Paths, see Chapter 3.

 86

Chapter 9. Tutorial 9: Automating and Scripting athenaCL

This tutorial demonstrates some of the many ways the athenaCL system can be automated, scripted,
and used from the shell and within the Python programming language. Such usage is primarily only
for advanced users.

9.1. The athenacl Command-Line Utility

On UNIX-based environments such as GNU/Linux, MacOS X, and BSD, athenaCL can be
controlled and automated from the command-line shell without directly entering the athenaCL
Interpreter. The athenacl command-line utility should be installed according to the directions
specified in Appendix A. Either directly from the command line, or through the use of shell scripts
or shell calls from other programs, the complete functionality of athenaCL is available.

The athenacl command-line tool provides a flag, "-e", with which to delimit any number of complete
athenaCL commands and command-line arguments. Arguments following the -e flag, in most
circumstances, should be enclosed in quotes.

In the following simple example the user, using the athenacl command-line tool, calls from the shell
(with the prompt "%") the AUpc command to view pitch information for 9000 hertz. Each
command and its arguments are included in quotes. The optional "confirm" argument is used with
the q command to immediately quit athenaCL without confirmation.

Example 9-1. Calling a command with arguments from the UNIX shell

% athenacl -e "aupc 9000hz" -e "q confirm"

athenaCL 1.4.0 (on darwin via terminal threading off)
Enter "cmd" to see all commands. For help enter "?".
Enter "c" for copyright, "w" for warranty, "r" for credits.

:: AUpc 9000hz
AthenaUtility Pitch Converter
format fq
name C#~9
midi 121
pitch-class 1
pch 13.0125
frequency 9000.0000
pitch-space 61.25

:: q confirm

%

In the following example the user calls a number of athenaCL commands with complete arguments
to create Textures and an EventList. Using EventMode midiPercussion, three LineGroove Textures,
each with a different instrument number, are created. Each Texture's rhythm is edited with TIe, and
then the amplitudes and tempi (bpm) of the ensemble of Textures is edited with TEe. A new
EventList is created and auditioned. Note that, as when using complete command-line arguments

 Tutorial 9: Automating and Scripting athenaCL

 87

within the athenaCL Interpreter, ParameterObject argument lists may not include any spaces.
(Replace "/Volumes/xdisc/_scratch/" with a complete file path to a suitable directory.)

Example 9-2. Creating and editing Textures from the UNIX shell

% athenacl -e "emo mp" -e "tmo lg" -e "tin a1 36" -e "tie r
l,((4,3,1),(4,3,0),(4,2,1)),rc" -e "tin b1 37" -e "tie r
l,((4,6,1),(4,1,1),(4,3,1)),rc" -e "tin c1 53" -e "tie r
l,((4,1,1),(4,1,1),(4,6,0)),rw" -e "tee a bg,rc,(.5,.7,.75,.8,1)" -e "tee b
ws,t,4,0,122,118" -e "eln /Volumes/xdisc/_scratch/a.xml" -e "elh" -e "q
confirm"

athenaCL 1.4.0 (on darwin via terminal threading off)
Enter "cmd" to see all commands. For help enter "?".
Enter "c" for copyright, "w" for warranty, "r" for credits.

:: EMo mp
EventMode mode set to: midiPercussion.

:: TMo lg
TextureModule LineGroove now active.

:: TIn a1 36
TI a1 created.

:: TIe r l,((4,3,1),(4,3,0),(4,2,1)),rc
TI a1: parameter rhythm updated.

:: TIn b1 37
TI b1 created.

:: TIe r l,((4,6,1),(4,1,1),(4,3,1)),rc
TI b1: parameter rhythm updated.

:: TIn c1 53
TI c1 created.

:: TIe r l,((4,1,1),(4,1,1),(4,6,0)),rw
TI c1: parameter rhythm updated.

:: TEe a bg,rc,(.5,.7,.75,.8,1)
TI a1: parameter amplitude updated.
TI c1: parameter amplitude updated.
TI b1: parameter amplitude updated.

:: TEe b ws,t,4,0,122,118
TI a1: parameter bpm updated.
TI c1: parameter bpm updated.
TI b1: parameter bpm updated.

:: ELn /Volumes/xdisc/_scratch/a.xml
 EventList a complete:
/Volumes/xdisc/_scratch/a.mid
/Volumes/xdisc/_scratch/a.xml

:: ELh
EventList hear initiated: /Volumes/xdisc/_scratch/a.mid

:: q confirm

%

 Tutorial 9: Automating and Scripting athenaCL

 88

9.2. Creating an athenaCL Interpreter within Python

Within a Python interpreter or a Python script on any platform, one or more instances of the
athenaCL Interpreter can be created and programmatically controlled. The cmd() method of an
Interpreter instance allows athenaCL commands and arguments to be passed to the Interpreter as
strings. The cmd() method returns two values, a status flag (0 or 1) and a string message or display.
The status flag must be checked to determine successful completion of a command; as the
Interpreter is designed to handle errors, exceptions generally will not be raised.

Example 9-3. An athenaCL Interpreter in Python

>>> from athenaCL import athenaObj
>>> athInptr = athenaObj.Interpreter()
>>> ok, msg = athInptr.cmd('AUpc 9000hz')
>>> if ok: print msg
...
AthenaUtility Pitch Converter
format fq
name C#~9
midi 121
pitch-class 1
pch 13.0125
frequency 9000.0000
pitch-space 61.25

9.3. Creating athenaCL Generator ParameterObjects within Python

Components of the athenaCL system can be used in isolation as resources within Python. Generator
ParameterObjects offer particularly useful resources for a range of generative activities.

To create a Generator ParameterObject, a Python list of ParameterObject arguments must be
passed to the factory() function of the parameter module. This list of arguments must provide
proper data objects for each argument.

The returned ParameterObject instance has many useful attributes and methods. The doc attribute
provides the ParameterObject documentation string. The __str__ method, accessed with the built-in
str() function, returns the complete formatted argument string. The __call__ method, accessed by
calling the instance name, takes a single argument and returns the next value, or the value at the
specified argument time value.

Example 9-4. Creating a Generator ParameterObject

>>> from athenaCL.libATH.libPmtr import parameter
>>> po = parameter.factory(['ws','t',6,0,-1,1])
>>> str(po)
'waveSine, time, (constant, 6), 0, (constant, -1), (constant, 1)'
>>> po.doc
'Provides sinusoid oscillation between 0 and 1 at a rate given in either time or events
per period. This value is scaled within the range designated by min and max; min and max
may be specified with ParameterObjects. Depending on the stepString argument, the period
rate (frequency) may be specified in spc (seconds per cycle) or eps (events per cycle).

 Tutorial 9: Automating and Scripting athenaCL

 89

The phase argument is specified as a value between 0 and 1. Note: conventional cycles per
second (cps or Hz) are not used for frequency.'
>>> po(1)
0.8660254037844386
>>> po(5)
-0.86602540378443904

 90

Appendix A. Installation Instructions (readme.txt)

athenaCL Copyright (c) 2000-2008 Christopher Ariza and others.
athenaCL is free software, distributed under the GNU General Public License.

www.athenacl.org

_________________________._________.________________________________
athenaCL 1.4.8
16 April 2008
This document contains the following information:

I. Platform Dependencies
II. Software Dependencies
IIIa. Quick Start Distributions
IIIb. Quick Start Installers
IVa. Application Environments
IVb. Installation
IVc. athenaCL via Command Line Interface
IVd. athenaCL via Python Interpreter Application
IVe. athenaCL via IDLE
IVf. athenaCL via Python Prompt
V. Documentation
VI. Contact Information
VII. Credits and Acknowledgments

.___.________._________.___________._____________________.___.._____
I. PLATFORM DEPENDENCIES:

athenaCL is distributed as executable cross-platform source-code. Platform-
specific distributions and installers are provided for convenience. Make sure
you have downloaded the correct archive for your platform:

 Distributions:

unix (GNU/Linux, BSD)
http://www.flexatone.net/athenaCL/athenaCL.tar.gz

Macintosh MacOS X
http://www.flexatone.net/athenaCL/athenaCL.dmg

Macintosh MacOS 9
http://www.flexatone.net/athenaCL/athenaCL.sit.hqx

Windows (any)
http://www.flexatone.net/athenaCL/athenaCL.zip

 Installers:

Windows Installer (exe)
http://www.flexatone.net/athenaCL/athenaCL.exe

..________._____________.._________________._______._.____________
II. SOFTWARE DEPENDENCIES:

athenaCL requires Python 2.3 or better. There is no athenaCL binary: athenaCL
interactive sessions run inside a Python interpreter. Python is free and runs on
every platform. No additional software is required for basic athenaCL operation.
Download Python here:
http://www.python.org/2.4

athenaCL produces both Csound and MIDI scores. Csound 5 is recommended; Csound

 Installation Instructions (readme.txt)

 91

4.16 or better is required to render Csound scores. Csound is free and runs on
every platform. Download Csound here:
http://www.csounds.com

athenaCL produces images with various Python-based graphic output systems. These
output systems include the Python TkInter GUI library and the Python Image
Library (PIL), and may require additional Python software. Most Python
distributions include TkInter (MacOS systems may require additional
configuration); PIL is easily added to Python. Download PIL here:
http://www.pythonware.com/products/pil/

__________________________________._________.____._________________.
IIIa. QUICK START DISTRIBUTIONS:

All Platforms
 1. install Python 2.3 or better
 2. decompress athenaCL distribution and place wherever desired

UNIX, Command Line Environments, Macintosh MacOS X:
 3. % pythonw setup.py
 4. % pythonw athenacl.py

Macintosh MacOS X:
 3. double-click "setup.command"
 4. double-click "athenacl.command"

Windows, Macintosh MacOS 9:
 3. double-click "setup.py"
 4. double-click "athenacl.py"

For more information and additional installation options, see below.

__________._________.______________.________._____________._________
IIIb. QUICK START INSTALLERS:

Python Prompt
 1. double click the installer and follow the instructions
 2. start Python
 3. >>> import athenaCL.athenacl

Macintosh MacOS X Package Installer (mpkg)
 1. double click the .mpkg file and follow the instructions
 2. start Python
 3. >>> import athenaCL.athenacl

Windows Installer (exe)
 1. double click the .exe file and follow the instructions
 2. start python.exe
 3. >>> import athenaCL.athenacl

For more information and additional installation options, see below.

________________._.__________.________._____________________________
IVa. APPLICATION ENVIRONMENTS

athenaCL can be run in four different Python environments, depending on your
platform and Python installation. These four environments are explained below.

CLI: Command line interface. This is Python run from a system's native command
line environment. Running athenaCL within the CLI is recommended whenever
possible, and provides the greatest application functionality (including proper
line-wrapping and readline on unix environments).

PIA: Python Interpreter Application. On some operating systems, Python is run
from within a stand-alone application that emulates a command-line environment.

 Installation Instructions (readme.txt)

 92

IDLE: IDLE is the tk gui-based Integrated Development Environment distributed
with every Python installation. IDLE provides configurable syntax coloring as
well as a complete text editor.

PP: Python Prompt. If already in a Python interpreter, athenaCL can be imported
directly from the Python prompt.

The following list recommends an environment for each platform. Individual
instructions for each environment are provided below.

UNIX (any): CLI
Mac OSX (10.3, 10.4 System Python or MacPython): CLI
Mac OSX (10.2 + MacPython): CLI
Mac OS9 (MacPython): PIA
Windows (95/98/ME/XP): IDLE
Windows (NT/2000/XP): CLI

Notes for Mac OSX Users: MacOS X 10.3 (Panther), 10.4 (Tiger), and 10.5
(Leopard) include a complete Python installation (available via Terminal.app)
that will run athenaCL without additional configuration (found at
/usr/bin/python or /usr/bin/pythonw). The athenaCL.app application, included
with the .dmg distribution, assists the user in installing and running athenaCL.
MacOS X users may install the official Macintosh Python distribution instead
(installed at /usr/local/bin/python).

Notes for Windows Users: When launching a Python interpreter on some versions of
Windows, the resulting console does not have text scrolling and text selection
features. For this reason, Windows users will be asked when launching athenaCL
if they want to load athenaCL in IDLE. Loading athenaCL in IDLE may provide a
better command-line interface.

_______.._____________________._____________________._______________
IVb. INSTALLATION:

When not using a platform-specific installer, the user can configure the method
of distribution installation. Two methods are available: (1) placing the
athenaCL directory wherever desired, or (2) installing the athenaCL source into
the Python library with the Python Distribution Utilities (distutils). Both
permit using athenaCL as an interactive application and as a library imported in
Python.

Installing athenaCL consist of running the file "setup.py", a script that
performs installation procedures. Note: "setup.py" compiles large files to byte-
code and, depending on hardware, my take some time to complete.

The setup.py script can take arguments to perform optional installation
procedures. (1) the "tool" argument, on UNIX and MacOS X systems, will install a
command-line utility launcher, "athenacl," as well as a corresponding man page.
(2) the "install" argument, on all platforms, will perform a Python distutils
installation into the Python site-packages directory. (3) the "report" argument
provides information on all possible installation features. (4) the "uninstall"
option will remove all athenaCL installation files and directories.

_____.__..___.__.___________.___________________________________.___
IVc. athenaCL VIA COMMAND LINE INTERFACE (CLI):

installing:
 1. decompress athenaCL
 2. place athenaCL directory wherever you like
 3. enter the athenaCL directory
 4. % python setup.py

or, to install the "athenacl" launcher and the athenaCL man page:
 4. % python setup.py tool

 Installation Instructions (readme.txt)

 93

or, to perform a distutils installation
 4. % python setup.py install

launching from the command line interface:
 5. % python athenacl.py

launching with the athenaCL tool:
 5. % /usr/local/bin/athenacl

launching with the athenaCL tool and /usr/local/bin in PATH:
 5. % athenacl

_____._____________.__._________..______._____________._______._____
IVd. athenaCL VIA PYTHON INTERPRETER APPLICATION (PIA):

installing:
 1. decompress athenaCL
 2. place athenaCL directory wherever you like
 3. enter the athenaCL directory
 4. double-click "setup.py"

launching:
 5. double-click "athenacl.py"

______________________.__.___._______________________.___.__________
IVe. athenaCL VIA IDLE:

installing:
 1. decompress athenaCL
 2. place athenaCL directory wherever you like
 3. enter the athenaCL directory
 4. double-click "setup.py"

launching on Windows:
 5. double-click "athenacl.py"
 6. enter "y" when asked to start athenaCL in IDLE

launching from the command line interface:
 5. % python athenacl.py -s idle

___.______________________
IVf. athenaCL VIA PYTHON PROMPT (PP)

if the athenaCL setup.py script has been successfully completed, Python should
already by aware of the location of the current athenaCL installation (either
via a .pth file installed in site-packages, or a complete installation in site-
packages). If the athenaCL setup.py script has not been run, the directory
containing athenaCL must be manually added to the Python sys.path:
(if the athenaCL directory is located in the directory "/src")
 1. >>> import sys
 2. >>> sys.path.append('/src')

launching:
 3. >>> import athenaCL.athenacl

______.______.___.______________._____._____._________________._____
V. DOCUMENTATION:

For complete documentation, tutorials, and reference, see the athenaCL Tutorial
Manual:
www.flexatone.net/athenaDocs/

______________________._______._____________._______________________
VI. CONTACT INFORMATION:

 Installation Instructions (readme.txt)

 94

Send questions, comments, and bug reports to:
athenacl-development@lists.sourceforge.net
athenaCL development is hosted at SourceForge:
www.sourceforge.net/projects/athenacl

________.________________._______________._______________.__________
VII. CREDITS and ACKNOWLEDGMENTS:

athenaCL was created and is maintained by Christopher Ariza. Numerous generator
ParameterObjects based in part on the Object-oriented Music Definition
Environment (OMDE/pmask), Copyright 2000-2001 Maurizio Umberto Puxemdu; Cmask
was created by Andre Bartetzki. The Command Line Interpreter is based in part on
cmd.py; the module textwrap.py is by Greg Ward; both are distributed with
Python, Copyright 2001-2003 Python Software Foundation. The fractional noise
implementation in dice.py, Audacity spectrum importing, and dynamic
ParameterObject boundaries are based in part on implementations by Paul Berg.
The module genetic.py is based in part on code by Robert Rowe. The module
midiTools.py is based in part on code by Bob van der Poel. The module chaos.py
is based in part on code by Hans Mikelson. The module permutate.py is based in
part on code by Ulrich Hoffman. Pitch class set names provided in part by Larry
Solomon. Voice leading tools based on a model by Joseph N. Straus. The module
OSC.py is Copyright 2002 Daniel Holth and Clinton McChesney. Additional OSC
programming and Python interface by Jonathan Saggau. The Notification Framework
is Copyright 2001, 2002, 2003 Sebastien Bigaret. The Singleton Pattern is by
Jurgen Hermann. The Future thread model is by David Perry. The Rabin-Miller
Primality Test is based in part on an implementation by Stephen Krenzel. The
mpkg installer is generated with py2app (bdist_mpkg) by Bob Ippolito. Python
language testing done with PyChecker (by Neal Norwitz Copyright 2000-2001
MetaSlash Inc.) and pyflakes (by Phil Frost Copyright 2005 Divmod Inc.). Thanks
to the following people for suggestions and feedback: Paul Berg, Per Bergqvist,
Marc Demers, Ryan Dorin, Elizabeth Hoffman, Anthony Kozar, Paula Matthusen,
Robert Rowe, Jonathan Saggau, and Jesse Sklar. Thanks also to the many users who
have submitted anonymous bug-reports.

Apple, Macintosh, Mac OS, and QuickTime are trademarks or registered trademarks
of Apple Computer, Inc. Finale is a trademark of MakeMusic! Inc. Java is a
trademark of Sun Microsystems. Linux is a trademark of Linus Torvalds. Max/MSP
is a trademark of Cycling '74. Microsoft Windows and Visual Basic are trademarks
or registered trademarks of Microsoft, Inc. PDF and PostScript are trademarks of
Adobe, Inc. Sibelius is a trademark of Sibelius Software Ltd. SourceForge.net is
a trademark of VA Software Corporation. UNIX is a trademark of The Open Group.

 95

Appendix B. Command Reference

B.1. AthenaHistory Commands

B.1.1. AH

AthenaHistory: Commands: Displays a list of all AthenaHistory commands.

B.1.2. AHexe

AHexe: AthenaHistory: Execute: Execute a command or a command range within the current
history.

B.1.3. AHls

AHls: AthenaHistory: List: Displays a listing of the current history.

B.1.4. AHrm

AHrm: AthenaHistory: Remove: Deletes the stored command history.

B.2. AthenaObject Commands

B.2.1. AO

AthenaObject: Commands: Displays a list of all AthenaObject commands.

B.2.2. AOals

AOals: AthenaObject: Attribute List: Displays raw attributes of the current AthenaObject.

B.2.3. AOl

AOl: AthenaObject: Load: Load an athenaCL XML AthenaObject. Loading an AthenaObject will
overwrite any objects in the current AthenaObject.

 Command Reference

 96

B.2.4. AOmg

AOmg: AthenaObject: Merge: Merges a selected XML AthenaObject with the current
AthenaObject.

B.2.5. AOrm

AOrm: AthenaObject: Remove: Reinitialize the AthenaObject, destroying all Paths, Textures, and
Clones.

B.2.6. AOw

AOw: AthenaObject: Save: Saves an AthenaObject file, containing all Paths, Textures, Clones, and
environment settings.

B.3. AthenaPreferences Commands

B.3.1. AP

AthenaPreferences: Commands: Displays a list of all AthenaPreferences commands.

B.3.2. APcc

APcc: AthenaPreferences: Customize Cursor: Lets the user customize the cursor prompt tool by
replacing any of the standard characters with any string. The user may optionally select to restore
system defaults.

B.3.3. APcurs

APcurs: AthenaPreferences: Cursor: Toggle between showing or hiding the cursor prompt tool.

B.3.4. APdir

APdir: AthenaPreferences: Directories: Lets the user select or enter directories necessary for writing
and searching files. Directories that can be entered are the "scratch" directory, the "user ssdir", and
the "user sadir". The scratch directory is used for writing temporary files with
automatically-generated file names. Commands such as SCh, PIh, and those that produce graphics
(depending on format settings specified with APgfx) use this directory. The user ssdir and sadir are
used within ParameterObjects that search for files. With such ParameterObjects, the user can specify
any file within the specified directory simply by name. To find the the file's complete file path, all
directories are recursively searched in both the user ssdir and the libATH/ssdir. Directories named

 Command Reference

 97

"_exclude" will not be searched. If files in different nested directories do not have unique file names,
correct file paths may not be found.

B.3.5. APdlg

APdlg: AthenaPreferences: Dialogs: Toggle between different dialog modes. Not all modes are
available on every platform or Python installation. The "text" dialog mode works without a GUI,
and is thus available on all platforms and Python installations.

B.3.6. APea

APea: AthenaPreferences: External Applications: Set the file path to external utility applications used
by athenaCL. External applications can be set for Csound (csoundCommand) and for handling
various media files: midi (midiPlayer), audio (audioPlayer), text (textReader), image (imageViewer),
and postscript (psViewer).

B.3.7. APgfx

APgfx: AthenaPreferences: Graphics: Toggle between different graphic output formats. All modes
may not be available on every platform or Python installation. This command uses the active graphic
output format; this can be selected with the "APgfx" command. Output in "tk" requires the Python
Tkinter GUI installation; output in "png" and "jpg" requires the Python Imaging Library (PIL)
library installation; output in "eps" and "text" do not require any additional software or
configuration.

B.3.8. APr

APr: AthenaPreferences: Refresh: When refresh mode is active, every time a Texture or Clone is
edited, a new event list is calculated in order to test ParameterObject compatibility and to find
absolute time range. When refresh mode is inactive, editing Textures and Clones does not test event
list production, and is thus significantly faster.

B.3.9. APwid

APwid: AthenaPreferences: Width: Manually set the number of characters displayed per line during
an athenaCL session. Use of this preference is only necessary on platforms that do not provide a
full-featured terminal envrionment.

 Command Reference

 98

B.4. AthenaScript Commands

B.4.1. ASexe

ASexe: AthenaScript: Execute: Runs an AthenaScript if found in the libATH/libAS directory. Not
for general use.

B.5. AthenaUtility Commands

B.5.1. AU

AthenaUtility: Commands: Displays a list of all AthenaUtility commands.

B.5.2. AUbeat

AUbeat: AthenaUtility: Beat: Simple tool to calculate the duration of a beat in BPM.

B.5.3. AUbug

AUbug: AthenaUtility: Bug: causes a bug to test the error reporting system.

B.5.4. AUca

AUca: AthenaUtility: Cellular Automata: Utility for producing visual representations of values
generated by various one-dimensional cellular automata.

B.5.5. AUdoc

AUdoc: AthenaUtility: Documentation: Opens the athenaCL documentation in a web browser.
Attempts to load documentation from a local copy; if this fails, the on-line version is loaded.

B.5.6. AUlog

AUlog: AthenaUtility: Log: If available, opens the athenacl-log file used to store error messages.

B.5.7. AUma

AUma: AthenaUtility: Markov Analysis: Given a desired maximum order, this command analyzes
the the provided sequence of any space delimited values and returns a Markov transition string.

 Command Reference

 99

B.5.8. AUmg

AUmg: AthenaUtility: Markov Generator: Given a properly formated Markov transition string, this
command generates a number of values as specified by the count argument. Markov transition
strings are entered using symbolic definitions and incomplete n-order weight specifications. The
complete transition string consists of two parts: symbol definition and weights. Symbols are defined
with alphabetic variable names, such as "a" or "b"; symbols may be numbers, strings, or other
objects. Key and value pairs are notated as such: name{symbol}. Weights may be give in integers or
floating point values. All transitions not specified are assumed to have equal weights. Weights are
specified with key and value pairs notated as such: transition{name=weight | name=weight}. The
":" character is used as the zero-order weight key. Higher order weight keys are specified using the
defined variable names separated by ":" characters. Weight values are given with the variable name
followed by an "=" and the desired weight. Multiple weights are separated by the "|" character. All
weights not specified, within a defined transition, are assumed to be zero. For example, the
following string defines three variable names for the values .2, 5, and 8 and provides a zero order
weight for b at 50%, a at 25%, and c at 25%: a{.2}b{5}c{8} :{a=1|b=2|c=1}. N-order weights can
be included in a transition string. Thus, the following string adds first and second order weights to
the same symbol definitions: a{.2}b{5}c{8} :{a=1|b=2|c=1} a:{c=2|a=1} c:{b=1}
a:a:{a=3|b=9} c:b:{a=2|b=7|c=4}. For greater generality, weight keys may employ limited
single-operator regular expressions within transitions. Operators permitted are "*" (to match all
names), "-" (to not match a single name), and "|" (to match any number of names). For example,
a:*:{a=3|b=9} will match "a" followed by any name; a:-b:{a=3|b=9} will match "a" followed by
any name that is not "b"; a:b|c:{a=3|b=9} will match "a" followed by either "b" or "c".

B.5.9. AUpc

AUpc: AthenaUtility: Pitch Converter: Enter a pitch, pitch name, or frequency value to display the
pitch converted to all formats. Pitches may be specified by letter name (psName), pitch space
(psReal), pitch class, MIDI note number, or frequency. Pitch letter names may be specified as
follows: a sharp is represented as "#"; a flat is represented as "$"; a quarter sharp is represented as
"~"; multiple sharps, quarter sharps, and flats are valid. Octave numbers (where middle-C is C4) can
be used with pitch letter names to provide register. Pitch space values (as well as pitch class) place
C4 at 0.0. MIDI note numbers place C4 at 60. Numerical representations may encode microtones
with additional decimal places. MIDI note-numbers and frequency values must contain the
appropriate unit as a string ("m" or "hz").

B.5.10. AUsys

AUsys: AthenaUtility: System: Displays a list of all athenaCL properties and their current status.

B.5.11. AUup

AUup: AthenaUtility: Update: Checks on-line to see if a new version of athenaCL is available; if so,
the athenaCL download page will be opened in a web browser.

 Command Reference

 100

B.6. CsoundPreferences Commands

B.6.1. CP

CsoundPreferences: Commands: Displays a list of all CsoundPreferences commands.

B.6.2. CPauto

CPauto: CsoundPreferences: Auto Score Render Control: Turn on or off auto score render, causing
athenaCL to automatically render (ELr) and hear (ELh) audio files every time a Csound score is
created with ELn.

B.6.3. CPch

CPch: CsoundPreferences: Channels: Choose the number of audio channels used in creating the
Csound orchestra. Channel options are mono, stereo, and quad (1, 2, and 4 channels).

B.6.4. CPff

CPff: CsoundPreferences: FileFormat: Choose which audio file format (AIF, WAVE, or
SoundDesignerII) is created by Csound.

B.7. EventList Commands

B.7.1. EL

EventList: Commands: Displays a list of all EventList commands.

B.7.2. ELh

ELh: EventList: Hear: If possible, opens and presents to the user the last audible EventList output
(audio file, MIDI file) created in the current session.

B.7.3. ELn

ELn: EventList: New: Create a new event list, in whatever formats are specified within the active
EventMode and EventOutput. Generates new events for all Textures and Clones that are not
muted. Specific output formats are determined by the active EventMode (EMo) and selected output
formats (EOo).

 Command Reference

 101

B.7.4. ELr

ELr: EventList: Render: Renders the last event list created in the current session with the Csound
application specified by APea.

B.7.5. ELv

ELv: EventList: View: Opens the last event list created in the current session as a text document.

B.7.6. ELw

ELw: EventList: Save: Write event lists stored in Textures and Clones, in whatever formats specified
within the active EventMode and EventOutput; new event lists are not generated, and output will
always be identical.

B.8. EventMode Commands

B.8.1. EM

EventMode: Commands: Displays a list of all EventMode commands.

B.8.2. EMi

EMi: EventMode: Instruments: Displays a list of all instruments available as defined within the
active EventMode. The instrument assigned to a Texture determines the number of auxiliary
parameters and the default values of these parameters.

B.8.3. EMls

EMls: EventMode: List: Displays a list of available EventModes.

B.8.4. EMo

EMo: EventMode: Select: Select an EventMode. EventModes determine what instruments are
available for Textures, default auxiliary parameters for Textures, and the final output format of
created event lists.

B.8.5. EMv

EMv: EventMode: View: Displays documentation for the active EventMode. Based on EventMode
and selected EventOutputs, documentation for each active OutputEngine used to process events is
displayed.

 Command Reference

 102

B.9. EventOutput Commands

B.9.1. EO

EventOutput: Commands: Displays a list of all EventOutput commands.

B.9.2. EOls

EOls: EventOutput: List: List all available EventOutput formats.

B.9.3. EOo

EOo: EventOutput: Select: Adds a possible output format to be produced when an event list is
created. Possible formats are listed with EOls.

B.9.4. EOrm

EOrm: EventOutput: Remove: Removes a possible output format to be produced when an event
list is created. Possible formats can be seen with EOls.

B.10. MapClass Commands

B.10.1. MC

MapClass: Commands: Displays a list of all MapClass dictionary commands.

B.10.2. MCcm

MCcm: MapClass: Comparison: Displays all possible maps and analysis data between any two sets of
six or fewer members. Maps can be sorted by Joseph N. Straus's atonal voice-leading measures
Smoothness, Uniformity, or Balance. Full analysis data is provided for each map, including vectors
for each measure, displacement, offset, max, and span.

B.10.3. MCgrid

MCgrid: MapClass: Grid: Creates a grid of all minimum displacements between every set class of
two cardinalities. Cardinalities must be six or fewer. Note: for large cardinalities, processing time
may be long. Note: values calculated between different-sized sets may not represent the shortest
transitional distance.

 Command Reference

 103

B.10.4. MCnet

MCnet: MapClass: Network: Creates a graphical display of displacement networks between set
classes.

B.10.5. MCopt

MCopt: MapClass: Optimum: Finds an optimum voice leading and minimum distance for any two
sets of six or fewer elements.

B.10.6. MCv

MCv: MapClass: View: Displays a listing of MapClasses for a given size class (source to destination
size) and between a range of indexes. MapClasses are notated in two possible notations. An index
notation specifies a source:destination size pair followed by an index number. For example: 3:4-35 is
the thirty fifth map class between sets of 3 and 4 elements. A spatial notation uses names and order
position to code transitions. For example: (cd(ab)).

B.11. PathInstance Commands

B.11.1. PI

PathInstance: Commands: Displays a list of all PathInstance commands.

B.11.2. PIals

PIals: PathInstance: Attribute List: Displays a listing of raw attributes of the selected Path.

B.11.3. PIcp

PIcp: PathInstance: Copy: Create a copy of a selected Path.

B.11.4. PIdf

PIdf: PathInstance: Duration Fraction: Provide a new list of duration fractions for each pitch group
of the active Path. Duration fractions are proportional weightings that scale a total duration
provided by a Texture. When used within a Texture, each pitch group of the Path will be sustained
for this proportional duration. Values must be given in a comma-separated list, and can be
percentages or real values.

 Command Reference

 104

B.11.5. PIe

PIe: PathInstance: Edit: Edit a single Multiset in the active Path.

B.11.6. PIh

PIh: PathInstance: Hear: Creates a temporary Texture with the active Path and the active
TextureModule, and uses this Texture to write a short sample EventList as a temporary MIDI file.
This file is written in the scratch directory specified by APdir command. If possible, this file is
opened and presented to the user.

B.11.7. PIls

PIls: PathInstance: List: Displays a list of all Paths.

B.11.8. PImv

PImv: PathInstance: Move: Rename a Path, and all Texture references to that Path.

B.11.9. PIn

PIn: PathInstance: New: Create a new Path from user-specified pitch groups. Users may specify
pitch groups in a variety of formats. A Forte set class number (6-23A), a pitch-class set (4,3,9), a
pitch-space set (-3, 23.2, 14), standard pitch letter names (A, C##, E~, G#), MIDI note numbers
(58m, 62m), frequency values (222hz, 1403hz), a Xenakis sieve (5&3|11), or an Audacity
frequency-analysis file (import) all may be provided. Pitches may be specified by letter name
(psName), pitch space (psReal), pitch class, MIDI note number, or frequency. Pitch letter names
may be specified as follows: a sharp is represented as "#"; a flat is represented as "$"; a quarter sharp
is represented as "~"; multiple sharps, quarter sharps, and flats are valid. Octave numbers (where
middle-C is C4) can be used with pitch letter names to provide register. Pitch space values (as well as
pitch class) place C4 at 0.0. MIDI note numbers place C4 at 60. Numerical representations may
encode microtones with additional decimal places. MIDI note-numbers and frequency values must
contain the appropriate unit as a string ("m" or "hz"). Xenakis sieves are entered using logic
constructions of residual classes. Residual classes are specified by a modulus and shift, where
modulus 3 at shift 1 is notated 3@1. Logical operations are notated with "&" (and), "|" (or), "^"
(symmetric difference), and "-" (complementation). Residual classes and logical operators may be
nested and grouped by use of braces ({}). Complementation can be applied to a single residual class
or a group of residual classes. For example: -{7@0|{-5@2&-4@3}}. When entering a sieve as a
pitch set, the logic string may be followed by two comma-separated pitch notations for register
bounds. For example "3@2|4, c1, c4" will take the sieve between c1 and c4. Audacity
frequency-analysis files can be produced with the cross-platform open-source audio editor Audacity.
In Audacity, under menu View, select Plot Spectrum, configure, and export. The file must have a .txt
extension. To use the file-browser, enter "import"; to select the file from the prompt, enter the
complete file path, optionally followed by a comma and the number of ranked pitches to read.

 Command Reference

 105

B.11.10. PIo

PIo: PathInstance: Select: Select the active Path. Used for "PIret", "PIrot", "PIslc", "PScpa",
"PScpb", and "TIn".

B.11.11. PIopt

PIopt: PathInstance: Optimize: Creates a new Path from a voice-leading optimization of the active
Path. All pitch groups will be transposed to an optimized transposition, and a new PathVoice will be
created with optimized voice leadings. Note: PathVoices are not preserved in the new Path.

B.11.12. PIret

PIret: PathInstance: Retrograde: Creates a new Path from the retrograde of the active Path. All
PathVoices are preserved in the new Path.

B.11.13. PIrm

PIrm (name): PathInstance: Remove: Delete a selected Path.

B.11.14. PIrot

PIrot: PathInstance: Rotation: Creates a new Path from the rotation of the active Path. Note: since a
rotation creates a map not previously defined, PathVoices are not preserved in the new Path.

B.11.15. PIslc

PIslc: PathInstance: Slice: Creates a new Path from a slice of the active Path. All PathVoices are
preserved in the new Path.

B.11.16. PIv

PIv: PathInstance: View: Displays all properties of the active Path.

B.12. PathSet Commands

B.12.1. PS

PathSet: Commands: Displays a list of all PathSet commands.

 Command Reference

 106

B.12.2. PScma

PScma: PathSet: Comparison A: Analyze the active Path as a sequence of set classes. Compare each
adjacent pair of pitch groups, as set classes, using the active SetMeasure. A SetMeasure is activated
with the "SMo" command.

B.12.3. PScmb

PScmb: PathSet: Comparison B: Analyze the active Path as a Sequence of set classes. Compare each
set class with a reference set class, employing the active SetMeasure.

B.13. PathVoice Commands

B.13.1. PV

PathVoice: Commands: Displays a list of all PathVoice commands.

B.13.2. PVan

PVan: PathVoice: Analysis: Displays Smoothness, Uniformity, and Balance analysis data for each
map in the active PathVoice of the active Path.

B.13.3. PVauto

PVauto: PathVoice: Auto: Create a new PathVoice with mappings chosen automatically from either
the first or last ranked map of a user-selected ranking method (Smoothness, Uniformity, or Balance).
A new PathVoice is created, all maps being either first or last of the particular ranking.

B.13.4. PVcm

PVcm: PathVoice: Comparison: Displays Smoothness, Uniformity, and Balance analysis data for an
ordered partition of all maps available between any two sets in the active Path.

B.13.5. PVcp

PVcp: PathVoice: Copy: Duplicate an existing PathVoice within the active Path. To see all
PathVoices enter "PVls".

B.13.6. PVe

PVe: PathVoice: Edit: Choose a new map for a single position within the active PathVoice and Path.

 Command Reference

 107

B.13.7. PVls

PVls: PathVoice: List: Displays a list of all PathVoices associated with the active Path.

B.13.8. PVn

PVn: PathVoice: New: Create a new PathVoice (a collection of voice leadings) for the active Path.
Each PathVoice voice leading may be selected by rank or map. Rank allows the user to select a map
based on its Smoothness, Uniformity, or Balance ranking.

B.13.9. PVo

PVo: PathVoice: Select: Select an existing PathVoice within the active Path. To see all PathVoices
enter "PVls".

B.13.10. PVrm

PVrm: PathVoice: Delete: Delete an existing PathVoice within the active Path. To see all PathVoices
enter "PVls".

B.13.11. PVv

PVv: PathVoice: View: Displays the active Path and the active PathVoice.

B.14. SetClass Commands

B.14.1. SC

SetClass: Commands: Displays a list of all SetClass dictionary commands.

B.14.2. SCcm

SCcm: SetClass: Comparison: Compare any two user-selected pitch groups (as set classes) with all
available Set Class similarity measures (SetMeasures). For each SetMeasure the calculated similarity
value, a proportional graph of that value within the SetMeasure's range, and the measure's range
(between minimum and maximum) are displayed.

B.14.3. SCf

SCf: SetClass: Find: Search all set classes with various search methods. Search methods include
searching by common name (such as major, all-interval, phrygian, or pentatonic), z-relation, or
superset.

 Command Reference

 108

B.14.4. SCh

SCh: SetClass: Hear: Creates a temporary Texture with the selected set and the DroneSustain
TextureModule, and uses this Texture to write a short sample EventList as a temporary MIDI file.
This file is written in the scratch directory specified by APdir command. If possible, this file is
opened and presented to the user.

B.14.5. SCmode

SCmode: SetClass: Mode: Sets system-wide Tn (set classes not differentiated by transposition) or
Tn/I (set classes not differentiated by transposition and inversion) state for all athenaCL set class
processing. To view active SCmode state, enter "AUsys".

B.14.6. SCs

SCs: SetClass: Search: Search all set classes with the active SetMeasure for similarity to a pitch group
(as a set class) and within a similarity range. The user must supply a pitch group and a percent
similarity range. Similarity ranges are stated within the unit interval (between 0 and 1). To change the
active SetMeasure, enter "SMo".

B.14.7. SCv

SCv: SetClass: View: Displays all data in the set class dictionary for the user-supplied pitch groups.
Users may specify pitch groups in a variety of formats. A Forte set class number (6-23A), a
pitch-class set (4,3,9), a pitch-space set (-3, 23.2, 14), standard pitch letter names (A, C##, E~, G#),
MIDI note numbers (58m, 62m), frequency values (222hz, 1403hz), a Xenakis sieve (5&3|11), or an
Audacity frequency-analysis file (import) all may be provided. Pitches may be specified by letter
name (psName), pitch space (psReal), pitch class, MIDI note number, or frequency. Pitch letter
names may be specified as follows: a sharp is represented as "#"; a flat is represented as "$"; a
quarter sharp is represented as "~"; multiple sharps, quarter sharps, and flats are valid. Octave
numbers (where middle-C is C4) can be used with pitch letter names to provide register. Pitch space
values (as well as pitch class) place C4 at 0.0. MIDI note numbers place C4 at 60. Numerical
representations may encode microtones with additional decimal places. MIDI note-numbers and
frequency values must contain the appropriate unit as a string ("m" or "hz"). Xenakis sieves are
entered using logic constructions of residual classes. Residual classes are specified by a modulus and
shift, where modulus 3 at shift 1 is notated 3@1. Logical operations are notated with "&" (and), "|"
(or), "^" (symmetric difference), and "-" (complementation). Residual classes and logical operators
may be nested and grouped by use of braces ({}). Complementation can be applied to a single
residual class or a group of residual classes. For example: -{7@0|{-5@2&-4@3}}. When entering a
sieve as a pitch set, the logic string may be followed by two comma-separated pitch notations for
register bounds. For example "3@2|4, c1, c4" will take the sieve between c1 and c4. Audacity
frequency-analysis files can be produced with the cross-platform open-source audio editor Audacity.
In Audacity, under menu View, select Plot Spectrum, configure, and export. The file must have a .txt
extension. To use the file-browser, enter "import"; to select the file from the prompt, enter the
complete file path, optionally followed by a comma and the number of ranked pitches to read. For

 Command Reference

 109

all pitch groups the SCv command interprets the values as a set class. The Normal Form, Invariance
Vector and all N Class Vectors (for the active Tn/TnI mode) are displayed. N-Class Vectors, when
necessary, are displayed in 20 register rows divided into two groups of 10 and divided with a dash
(-). The output of this command is configured by the active system Tn/TnI mode; to change the set
class Tn/TnI mode enter the command "SCmode".

B.15. SetMeasure Commands

B.15.1. SM

SetMeasure: Commands: Displays a list of all SetMeasure dictionary commands.

B.15.2. SMls

SMls: SetMeasure: List: Displays a list of all available SetMeasures.

B.15.3. SMo

SMo: SetMeasure: Select: Sets the active SetMeasure, or computational method of set class
comparison, used for "SCf", "PScpa", "PScpb" commands.

B.16. TextureClone Commands

B.16.1. TC

TextureClone: Commands: Displays a list of all TextureClone commands.

B.16.2. TCals

TCals: TextureClone: Attribute List: Displays raw attributes of the active Clone.

B.16.3. TCcp

TCcp: TextureClone: Copy: Duplicates a user-selected Clone associated with the active Texture.

B.16.4. TCdoc

TCdoc: TextureClone: Documentation: Displays documentation for each auxiliary parameter field
from the associated Texture, as well as argument formats for static Clone options.

 Command Reference

 110

B.16.5. TCe

TCe: TextureClone: Edit: Edit attributes of the active Clone.

B.16.6. TCls

TCls: TextureClone: List: Displays a list of all Clones associated with the active Texture.

B.16.7. TCmap

TCmap: TextureClone: Map: Displays a graphical map of the parameter values of the active Clone.
With the use of one optional argument, the TCmap display can be presented in two orientations. A
TCmap diagram can position values on the x-axis in an equal-spaced orientation for each event
(event-base), or in a time-proportional orientation, where width is relative to the time of each event
(time-base). As Clones process values produced by a Texture, all TCmap displays are post-TM. This
command uses the active graphic output format; this can be selected with the "APgfx" command.
Output in "tk" requires the Python Tkinter GUI installation; output in "png" and "jpg" requires the
Python Imaging Library (PIL) library installation; output in "eps" and "text" do not require any
additional software or configuration.

B.16.8. TCmute

TCmute: TextureClone: Mute: Toggle the active Clone (or any number of Clones named with
arguments) on or off. Muting a Clone prevents it from producing EventOutputs.

B.16.9. TCn

TCn: TextureClone: New: Creates a new Clone associated with the active Texture.

B.16.10. TCo

TCo: TextureClone: Select: Choose the active Clone from all available Clones associated with the
active Texture.

B.16.11. TCrm

TCrm: TextureClone: Remove: Deletes a Clone from the active Texture.

B.16.12. TCv

TCv: TextureClone: View: Displays all editable attributes of the active Clone, or a Clone named with
a single argument.

 Command Reference

 111

B.17. TextureEnsemble Commands

B.17.1. TE

TextureEnsemble: Commands: Displays a list of all TextureEnsemble commands.

B.17.2. TEe

TEe: TextureEnsemble: Edit: Edit a user-selected attribute for all Textures.

B.17.3. TEmap

TEmap: TextureEnsemble: Map: Provides a text-based display and/or graphical display of the
temporal distribution of Textures and Clones. This command uses the active graphic output format;
this can be selected with the "APgfx" command. Output in "tk" requires the Python Tkinter GUI
installation; output in "png" and "jpg" requires the Python Imaging Library (PIL) library installation;
output in "eps" and "text" do not require any additional software or configuration.

B.17.4. TEmidi

TEmidi: TextureEnsemble: MidiTempo: Edit the tempo written in a MIDI file. Where each Texture
may have an independent tempo, a MIDI file has one tempo. The tempo written in the MIDI file
does not effect playback, but may effect transcription into Western notation. The default tempo is
120 BPM.

B.17.5. TEv

TEv: TextureEnsemble: View: Displays a list of ParameterObject arguments for a single attribute of
all Textures.

B.18. TextureInstance Commands

B.18.1. TI

TextureInstance: Commands: Displays a list of all TextureInstance commands.

B.18.2. TIals

TIals: TextureInstance: Attribute List: Displays raw attributes of a Texture.

 Command Reference

 112

B.18.3. TIcp

TIcp: TextureInstance: Copy: Duplicates a user-selected Texture.

B.18.4. TIdoc

TIdoc: TextureInstance: Documentation: Displays auxiliary parameter field documentation for a
Texture's instrument, as well as argument details for static and dynamic Texture parameters.

B.18.5. TIe

TIe: TextureInstance: Edit: Edit a user-selected attribute of the active Texture.

B.18.6. TIls

TIls: TextureInstance: List: Displays a list of all Textures.

B.18.7. TImap

TImap: TextureInstance: Map: Displays a graphical map of the parameter values of the active
Texture. With the use of two optional arguments, the TImap display can be presented in four
orientations. A TImap diagram can position values on the x-axis in an equal-spaced orientation for
each event (event-base), or in a time-proportional orientation, where width is relative to the time of
each event (time-base). A TImap diagram can display, for each parameter, direct ParameterObject
values as provided to the TextureModule (pre-TM), or the values of each parameter of each event
after TextureModule processing (post-TM). This command uses the active graphic output format;
this can be selected with the "APgfx" command. Output in "tk" requires the Python Tkinter GUI
installation; output in "png" and "jpg" requires the Python Imaging Library (PIL) library installation;
output in "eps" and "text" do not require any additional software or configuration.

B.18.8. TImidi

TImidi: TextureInstance: MIDI: Set the MIDI program and MIDI channel of a Texture, used when
a "midiFile" EventOutput is selected. Users can select from one of the 128 GM MIDI programs by
name or number. MIDI channels are normally auto-assigned during event list production; manually
entered channel numbers (1 through 16) will override this feature.

B.18.9. TImode

TImode: TextureInstance: Mode: Set the pitch, polyphony, silence, and orcMap modes for the active
Texture. The pitchMode (either "sc", "pcs", or "ps") designates which Path form is used within the
Texture: "sc" designates the set class Path, which consists of non-transposed, non-redundant pitch

 Command Reference

 113

classes; "pcs" designates the pitch class space Path, retaining set order and transposition; "ps"
designates the pitch space Path, retaining order, transposition, and register.

B.18.10. TImute

TImute: TextureInstance: Mute: Toggle the active Texture (or any number of Textures named with
arguments) on or off. Muting a Texture prevents it from producing EventOutputs. Clones can be
created from muted Textures.

B.18.11. TImv

TImv: TextureInstance: Move: Renames a Texture, and all references in existing Clones.

B.18.12. TIn

TIn: TextureInstance: New: Creates a new instance of a Texture with a user supplied Instrument
and Texture name. The new instance uses the active TextureModule, the active Path, and an
Instrument selected from the active EventMode-determined Orchestra. For some Orchestras, the
user must supply the number of auxiliary parameters.

B.18.13. TIo

TIo: TextureInstance: Select: Select the active Texture from all available Textures.

B.18.14. TIrm

TIrm: TextureInstance: Remove: Deletes a user-selected Texture.

B.18.15. TIv

TIv: TextureInstance: View: Displays all editable attributes of the active Texture, or a Texture
named with a single argument.

B.19. TextureModule Commands

B.19.1. TM

TextureModule: Commands: Displays a list of all TextureModule commands.

 Command Reference

 114

B.19.2. TMls

TMls: TextureModule: List: Displays a list of all TextureModules.

B.19.3. TMo

TMo: TextureModule: Select: Choose the active TextureModule. This TextureModule is used with
the "TIn" and "TMv" commands.

B.19.4. TMv

TMv: TextureModule: View: Displays documentation for the active TextureModule.

B.20. TextureParameter Commands

B.20.1. TP

TextureParameter: Commands: Displays a list of all TextureParameter commands.

B.20.2. TPeg

TPeg: TextureParameter: Export Generator: Export ParameterObject data as a file; file type
available are audioFile, maxColl, textSpace, and textTab.

B.20.3. TPls

TPls: TextureParameter: List: Displays a list of all ParameterObjects.

B.20.4. TPmap

TPmap: TextureParameter: Map: Displays a graphical map of any ParameterObject. User must
supply parameter library name, the number of events to be calculated, and appropriate parameter
arguments. This command uses the active graphic output format; this can be selected with the
"APgfx" command. Output in "tk" requires the Python Tkinter GUI installation; output in "png"
and "jpg" requires the Python Imaging Library (PIL) library installation; output in "eps" and "text"
do not require any additional software or configuration.

B.20.5. TPv

TPv: TextureParameter: View: Displays documentation for one or more ParameterObjects. All
ParameterObjects that match the user-supplied search string will be displayed. ParameterObject
acronyms are accepted.

 Command Reference

 115

B.21. TextureTemperament Commands

B.21.1. TT

TextureTemperament: Commands: Displays a list of all TextureTemperament commands.

B.21.2. TTls

TTls: TextureTemperament: List: Displays a list of all temperaments available.

B.21.3. TTo

TTo: TextureTemperament: Select: Choose a Temperament for the active Texture. The
Temperament provides fixed or dynamic mapping of pitch values. Fixed mappings emulate
historical Temperaments, such as MeanTone and Pythagorean; dynamic mappings provide
algorithmic variation to each pitch processed, such as microtonal noise.

B.22. Other Commands

B.22.1. cmd

cmd: Displays a hierarchical menu of all athenaCL commands.

B.22.2. help

help: To get help for a command or any available topic, enter "help" or "?" followed by a search
string. If no command is provided, a menu of all commands available is displayed.

B.22.3. py

Begins an interactive Python session inside the current athenaCL session.

B.22.4. pypath

pypath: Lists all file paths in the Python search path.

B.22.5. q

q: Exit athenaCL.

 Command Reference

 116

B.22.6. quit

quit: Exit athenaCL.

B.22.7. shell

On UNIX-based platforms, the "shell" or "!" command executes a command-line argument in the
default shell.

 117

Appendix C. ParameterObject Reference and Examples

C.1. Generator ParameterObjects

C.1.1. accumulator (a)

accumulator, initValue, parameterObject

Description: For each evaluation, this Generator adds the result of the Generator ParameterObject
to the stored cumulative numeric value; the initialization value argument initValue is the origin of
the cumulative value, and is the first value returned.

Arguments: (1) name, (2) initValue, (3) parameterObject {Generator}

Sample Arguments: a, 0, (bg,rc,(1,3,4,7,-11))

Example C-1. accumulator Demonstration 1

accumulator, 0, (basketGen, randomChoice, (1,3,4,7,-11))

Example C-2. accumulator Demonstration 2

accumulator, 0, (waveSine, event, (constant, 20), 0, (constant, -0.5),
(constant, 1.5))

C.1.2. analysisSelect (as)

analysisSelect, fileNameList, selectionString

 ParameterObject Reference and Examples

 118

Description: Given a list of file names (fileNameList), this Generator provides a complete file path
to the file found within either the libATH/sadir or the user-selected sadir. Values are chosen from
this list using the selector specified by the selectionString argument.

Arguments: (1) name, (2) fileNameList, (3) selectionString {'randomChoice', 'randomWalk',
'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: as, (), rc

C.1.3. basketGen (bg)

basketGen, selectionString, valueList

Description: Chooses values from a user-supplied list (valueList). Values can be strings or numbers.
Values are chosen from this list using the selector specified by the selectionString argument.

Arguments: (1) name, (2) selectionString {'randomChoice', 'randomWalk', 'randomPermutate',
'orderedCyclic', 'orderedOscillate'}, (3) valueList

Sample Arguments: bg, rc, (0,0.25,0.25,1)

Example C-3. basketGen Demonstration 1

basketGen, randomChoice, (0,0.25,0.25,1)

Example C-4. basketGen Demonstration 2

basketGen, orderedOscillate, (0,0.1,0.2,0.4,0.8,0.6,0.5,1)

 ParameterObject Reference and Examples

 119

Example C-5. basketGen Demonstration 3

basketGen, randomWalk, (0,0.1,0.2,0.4,0.8,0.6,0.5,1)

C.1.4. breakGraphFlat (bgf)

breakGraphFlat, stepString, edgeString, parameterObject, parameterObject, pointCount

Description: Provides a dynamic break-point function without interpolation. A list of (x,y)
coordinate pairs is generated from two embedded Generator ParameterObjects. The number of
generated pairs is determined by the count argument. A step type (stepString) determines if x values
in the pointList refer to events or real-time values. Interpolated y values are the output of the
Generator. The edgeString argument determines if the break-point function loops, or is executed
once at the given coordinates.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4)
parameterObject {x point Generator}, (5) parameterObject {y point Generator}, (6) pointCount

Sample Arguments: bgf, e, l, (a,0,(bg,rp,(1,3,9))), (bg,rc,(0,0.25,0.5,0.75,1)), 60

Example C-6. breakGraphFlat Demonstration 1

breakGraphFlat, event, loop, (accumulator, 0, (basketGen, randomPermutate,
(1,3,9))), (basketGen, randomChoice, (0,0.25,0.5,0.75,1)), 60

C.1.5. breakGraphHalfCosine (bghc)

breakGraphHalfCosine, stepString, edgeString, parameterObject, parameterObject, pointCount

Description: Provides a dynamic break-point function with half-cosine interpolation. A list of (x,y)
coordinate pairs is generated from two embedded Generator ParameterObjects. The number of

 ParameterObject Reference and Examples

 120

generated pairs is determined by the count argument. A step type (stepString) determines if x values
in the pointList refer to events or real-time values. Interpolated y values are the output of the
Generator. The edgeString argument determines if the break-point function loops, or is executed
once at the given coordinates. The exponent argument may be any positive or negative numeric
value.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4)
parameterObject {x point Generator}, (5) parameterObject {y point Generator}, (6) pointCount

Sample Arguments: bghc, e, l, (a,0,(bg,rp,(1,3,9))), (bg,rc,(0,0.25,0.5,0.75,1)), 60

Example C-7. breakGraphHalfCosine Demonstration 1

breakGraphHalfCosine, event, loop, (accumulator, 0, (basketGen,
randomPermutate, (1,3,9))), (basketGen, randomChoice, (0,0.25,0.5,0.75,1)), 60

C.1.6. breakGraphLinear (bgl)

breakGraphLinear, stepString, edgeString, parameterObject, parameterObject, pointCount

Description: Provides a dynamic break-point function with linear interpolation. A list of (x,y)
coordinate pairs is generated from two embedded Generator ParameterObjects. The number of
generated pairs is determined by the count argument. A step type (stepString) determines if x values
in the pointList refer to events or real-time values. Interpolated y values are the output of the
Generator. The edgeString argument determines if the break-point function loops, or is executed
once at the given coordinates.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4)
parameterObject {x point Generator}, (5) parameterObject {y point Generator}, (6) pointCount

Sample Arguments: bgl, e, l, (a,0,(bg,rp,(1,3,9))), (bg,rc,(0,0.25,0.5,0.75,1)), 60

 ParameterObject Reference and Examples

 121

Example C-8. breakGraphLinear Demonstration 1

breakGraphLinear, event, loop, (accumulator, 0, (basketGen, randomPermutate,
(1,3,9))), (basketGen, randomChoice, (0,0.25,0.5,0.75,1)), 60

C.1.7. breakGraphPower (bgp)

breakGraphPower, stepString, edgeString, parameterObject, parameterObject, pointCount,
exponent

Description: Provides a dynamic break-point function with exponential interpolation. A list of (x,y)
coordinate pairs is generated from two embedded Generator ParameterObjects. The number of
generated pairs is determined by the count argument. A step type (stepString) determines if x values
in the pointList refer to events or real-time values. Interpolated y values are the output of the
Generator. The edgeString argument determines if the break-point function loops, or is executed
once at the given coordinates. The exponent argument may be any positive or negative numeric
value.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4)
parameterObject {x point Generator}, (5) parameterObject {y point Generator}, (6) pointCount, (7)
exponent

Sample Arguments: bgp, e, l, (a,0,(bg,rp,(1,3,9))), (bg,rc,(0,0.25,0.5,0.75,1)), 60, -1.5

Example C-9. breakGraphPower Demonstration 1

breakGraphPower, event, loop, (accumulator, 0, (basketGen, randomPermutate,
(1,3,9))), (basketGen, randomChoice, (0,0.25,0.5,0.75,1)), 60, -1.5

 ParameterObject Reference and Examples

 122

C.1.8. breakPointFlat (bpf)

breakPointFlat, stepString, edgeString, pointList

Description: Provides a break-point function without interpolation from a list of (x,y) coordinate
pairs (pointList). A step type (stepString) determines if x values in the pointList refer to events or
real-time values. Interpolated y values are the output of the Generator. The edgeString argument
determines if the break-point function loops, or is executed once at the given coordinates.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4) pointList

Sample Arguments: bpf, e, l, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6))

Example C-10. breakPointFlat Demonstration 1

breakPointFlat, event, loop, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6))

Example C-11. breakPointFlat Demonstration 2

breakPointFlat, event, single, ((12,0.3),(18,0.9),(24,0.2),(48,0.6))

Example C-12. breakPointFlat Demonstration 3

 ParameterObject Reference and Examples

 123

breakPointFlat, event, loop,
((0,0.3),(10,0.3),(11,0.8),(25,0.75),(26,0.5),(37,0.35),(42,0.7),(45,0.5))

C.1.9. breakPointHalfCosine (bphc)

breakPointHalfCosine, stepString, edgeString, pointList

Description: Provides a break-point function with half-cosine interpolation from a list of (x,y)
coordinate pairs (pointList). A step type (stepString) determines if x values in the pointList refer to
events or real-time values. Interpolated y values are the output of the Generator. The edgeString
argument determines if the break-point function loops, or is executed once at the given coordinates.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4) pointList

Sample Arguments: bphc, e, l, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6))

Example C-13. breakPointHalfCosine Demonstration 1

breakPointHalfCosine, event, loop, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6))

Example C-14. breakPointHalfCosine Demonstration 2

breakPointHalfCosine, event, single, ((12,0.3),(18,0.9),(24,0.2),(48,0.6))

 ParameterObject Reference and Examples

 124

Example C-15. breakPointHalfCosine Demonstration 3

breakPointHalfCosine, event, loop,
((0,0.3),(10,0.3),(11,0.8),(25,0.75),(26,0.5),(37,0.35),(42,0.7),(45,0.5))

C.1.10. breakPointLinear (bpl)

breakPointLinear, stepString, edgeString, pointList

Description: Provides a break-point function with linear interpolation from a list of (x,y) coordinate
pairs (pointList). A step type (stepString) determines if x values in the pointList refer to events or
real-time values. Interpolated y values are the output of the Generator. The edgeString argument
determines if the break-point function loops, or is executed once at the given coordinates.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4) pointList

Sample Arguments: bpl, e, l, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6))

Example C-16. breakPointLinear Demonstration 1

breakPointLinear, event, loop, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6))

Example C-17. breakPointLinear Demonstration 2

 ParameterObject Reference and Examples

 125

breakPointLinear, event, single, ((12,0.3),(18,0.9),(24,0.2),(48,0.6))

Example C-18. breakPointLinear Demonstration 3

breakPointLinear, event, loop,
((0,0.3),(10,0.3),(11,0.8),(25,0.75),(26,0.5),(37,0.35),(42,0.7),(45,0.5))

C.1.11. breakPointPower (bpp)

breakPointPower, stepString, edgeString, pointList, exponent

Description: Provides a break-point function with exponential interpolation from a list of (x,y)
coordinate pairs (pointList). A step type (stepString) determines if x values in the pointList refer to
events or real-time values. Interpolated y values are the output of the Generator. The edgeString
argument determines if the break-point function loops, or is executed once at the given coordinates.
The exponent argument may be any positive or negative numeric value.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) edgeString {'loop', 'single'}, (4) pointList,
(5) exponent

Sample Arguments: bpp, e, l, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6)), -1.5

Example C-19. breakPointPower Demonstration 1

breakPointPower, event, loop, ((0,1),(6,0.3),(12,0.3),(18,0),(24,0.6)), -1.5

 ParameterObject Reference and Examples

 126

Example C-20. breakPointPower Demonstration 2

breakPointPower, event, loop,
((0,0.2),(10,1),(20,0.8),(30,0.5),(40,0.2),(45,1),(50,0),(55,1)), 3.5

Example C-21. breakPointPower Demonstration 3

breakPointPower, event, single, ((12,0.3),(18,0.9),(24,0.8),(48,0.2)), -4

C.1.12. basketSelect (bs)

basketSelect, valueList, parameterObject

Description: Chooses values from a user-supplied list (valueList). Values can be strings or numbers.
Values are choosen from the list with values within the unit interval produced by an embedded
ParameterObject. Values that exceed the unit interval are limited within the unit interval.

Arguments: (1) name, (2) valueList, (3) parameterObject {selection Generator}

Sample Arguments: bs, (1,2,3,4,5,6,7,8,9),
(rb,0.2,0.2,(bpl,e,s,((0,0.4),(120,0))),(bpl,e,s,((0,0.6),(120,1))))

Example C-22. basketSelect Demonstration 1

 ParameterObject Reference and Examples

 127

basketSelect, (1,2,3,4,5,6,7,8,9), (randomBeta, 0.2, 0.2, (breakPointLinear,
event, single, ((0,0.4),(120,0))), (breakPointLinear, event, single,
((0,0.6),(120,1)))),

C.1.13. constant (c)

constant, value

Description: Return a constant string or numeric value.

Arguments: (1) name, (2) value

Sample Arguments: c, 0

Example C-23. constant Demonstration 1

constant, 0

C.1.14. constantFile (cf)

constantFile, absoluteFilePath

Description: Given an absolute file path, a constant file path is returned as a string. Note: symbolic
links (aliases or shortcuts) and home directory symbols (~) are expanded into complete paths.

Arguments: (1) name, (2) absoluteFilePath

Sample Arguments: cf,

C.1.15. cyclicGen (cg)

cyclicGen, directionString, min, max, increment

Description: Cycles between static minimum (min) and maximum (max) values with a static
increment value. Cycling direction and type is controlled by the directionString argument.

Arguments: (1) name, (2) directionString {'upDown', 'downUp', 'up', 'down'}, (3) min, (4) max, (5)
increment

 ParameterObject Reference and Examples

 128

Sample Arguments: cg, ud, 0, 1, 0.13

Example C-24. cyclicGen Demonstration 1

cyclicGen, upDown, 0, 1, 0.13

Example C-25. cyclicGen Demonstration 2

cyclicGen, down, 0, 1, 0.13

C.1.16. caList (cl)

caList, caSpec, parameterObject, parameterObject, tableExtractionString, selectionString

Description: Produces values from a one-dimensional cellular automata table. One dimensional
cellular automata may be standard, totalistic, continuous, or float formats, and are defined with a
caSpec string. The caSpec string may contain one or more CA parameters defined in key{value}
pairs. All parameters not defined assume default values. Valid parameters include f (format), k, r, i
(initialization), x (row width), y (number of steps), w (extracted width), c (extracted center), and s
(initial step skip). Rule and mutation values may be provided by embedded Generator
ParameterObjects. Values may be extracted into a list from the resulting table as defined by the
tableFormatString. Values are chosen from this list using the selector specified by the selectionString
argument.

Arguments: (1) name, (2) caSpec, (3) parameterObject {rule}, (4) parameterObject {mutation}, (5)
tableExtractionString {'averageColumn', 'averageColumnActive', 'averageColumnIndex',
'averageColumnIndexActive', 'averageColumnIndexPassive', 'averageColumnPassive', 'averageRow',
'averageRowActive', 'averageRowIndex', 'averageRowIndexActive', 'averageRowIndexPassive',
'averageRowPassive', 'flatColumn', 'flatColumnActive', 'flatColumnIndex', 'flatColumnIndexActive',
'flatColumnIndexPassive', 'flatColumnPassive', 'flatColumnReflect', 'flatColumnReflectActive',

 ParameterObject Reference and Examples

 129

'flatColumnReflectIndex', 'flatColumnReflectIndexActive', 'flatColumnReflectIndexPassive',
'flatColumnReflectPassive', 'flatRow', 'flatRowActive', 'flatRowIndex', 'flatRowIndexActive',
'flatRowIndexPassive', 'flatRowPassive', 'flatRowReflect', 'flatRowReflectActive',
'flatRowReflectIndex', 'flatRowReflectIndexActive', 'flatRowReflectIndexPassive',
'flatRowReflectPassive', 'productColumn', 'productColumnActive', 'productColumnIndex',
'productColumnIndexActive', 'productColumnIndexPassive', 'productColumnPassive',
'productRow', 'productRowActive', 'productRowIndex', 'productRowIndexActive',
'productRowIndexPassive', 'productRowPassive', 'sumColumn', 'sumColumnActive',
'sumColumnIndex', 'sumColumnIndexActive', 'sumColumnIndexPassive', 'sumColumnPassive',
'sumRow', 'sumRowActive', 'sumRowIndex', 'sumRowIndexActive', 'sumRowIndexPassive',
'sumRowPassive'}, (6) selectionString {'randomChoice', 'randomWalk', 'randomPermutate',
'orderedCyclic', 'orderedOscillate'}

Sample Arguments: cl, f{f}i{c}x{81}y{120}, 0.25, 0.0005, sc, oc

Example C-26. caList Demonstration 1

caList, f{f}k{0}r{1}i{center}x{81}y{120}w{81}c{0}s{0}, (constant, 0.25),
(constant, 0.0005), sumColumn, orderedCyclic

Example C-27. caList Demonstration 2

caList, f{s}k{2}r{1}i{center}x{91}y{120}w{91}c{0}s{0}, (markovValue,
a{90}b{182}:{a=29|b=1}, (constant, 0)), (constant, 0), flatRowIndexActive,
orderedCyclic

C.1.17. caValue (cv)

caValue, caSpec, parameterObject, parameterObject, tableExtractionString, min, max,
selectionString

 ParameterObject Reference and Examples

 130

Description: Produces values from a one-dimensional cellular automata table scaled within dynamic
min and max values. One dimensional cellular automata may be standard, totalistic, continuous, or
float formats, and are defined with a caSpec string. The caSpec string may contain one or more CA
parameters defined in key{value} pairs. All parameters not defined assume default values. Valid
parameters include f (format), k, r, i (initialization), x (row width), y (number of steps), w (extracted
width), c (extracted center), and s (initial step skip). Rule and mutation values may be provided by
embedded Generator ParameterObjects. Values may be extracted into a list from the resulting table
as defined by the tableFormatString. Values are chosen from this list using the selector specified by
the selectionString argument. After selection, this value is scaled within the range designated by min
and max; min and max may be specified with ParameterObjects.

Arguments: (1) name, (2) caSpec, (3) parameterObject {rule}, (4) parameterObject {mutation}, (5)
tableExtractionString {'averageColumn', 'averageColumnActive', 'averageColumnIndex',
'averageColumnIndexActive', 'averageColumnIndexPassive', 'averageColumnPassive', 'averageRow',
'averageRowActive', 'averageRowIndex', 'averageRowIndexActive', 'averageRowIndexPassive',
'averageRowPassive', 'flatColumn', 'flatColumnActive', 'flatColumnIndex', 'flatColumnIndexActive',
'flatColumnIndexPassive', 'flatColumnPassive', 'flatColumnReflect', 'flatColumnReflectActive',
'flatColumnReflectIndex', 'flatColumnReflectIndexActive', 'flatColumnReflectIndexPassive',
'flatColumnReflectPassive', 'flatRow', 'flatRowActive', 'flatRowIndex', 'flatRowIndexActive',
'flatRowIndexPassive', 'flatRowPassive', 'flatRowReflect', 'flatRowReflectActive',
'flatRowReflectIndex', 'flatRowReflectIndexActive', 'flatRowReflectIndexPassive',
'flatRowReflectPassive', 'productColumn', 'productColumnActive', 'productColumnIndex',
'productColumnIndexActive', 'productColumnIndexPassive', 'productColumnPassive',
'productRow', 'productRowActive', 'productRowIndex', 'productRowIndexActive',
'productRowIndexPassive', 'productRowPassive', 'sumColumn', 'sumColumnActive',
'sumColumnIndex', 'sumColumnIndexActive', 'sumColumnIndexPassive', 'sumColumnPassive',
'sumRow', 'sumRowActive', 'sumRowIndex', 'sumRowIndexActive', 'sumRowIndexPassive',
'sumRowPassive'}, (6) min, (7) max, (8) selectionString {'randomChoice', 'randomWalk',
'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: cv, f{s}, (c,110), (c,0), sr, 0, 1, oc

Example C-28. caValue Demonstration 1

caValue, f{s}k{2}r{1}i{center}x{91}y{135}w{91}c{0}s{0}, (constant, 110),
(constant, 0), sumRow, (constant, 0), (constant, 1), orderedCyclic

 ParameterObject Reference and Examples

 131

Example C-29. caValue Demonstration 2

caValue, f{s}k{2}r{1}i{random}x{81}y{120}w{81}c{0}s{0}, (breakPointLinear,
event, single, ((0,30),(119,34))), (constant, 0.05), sumRow, (constant, 0),
(constant, 1), orderedCyclic

Example C-30. caValue Demonstration 3

caValue, f{t}k{3}r{1}i{center}x{81}y{120}w{12}c{0}s{0}, (constant, 1842),
(breakPointLinear, event, loop, ((0,0),(80,0.02))), sumRow, (waveSine, event,
(constant, 15), 0, (constant, 0), (constant, 0.4)), (constant, 1),
orderedCyclic

C.1.18. directorySelect (ds)

directorySelect, directoryFilePath, fileExtension, selectionString

Description: Within a user-provided directory (directoryFilePath) and all sub-directories, this
Generator finds all files named with a file extension that matches the fileExtension argument, and
collects these complete file paths into a list. Values are chosen from this list using the selector
specified by the selectionString argument. Note: the fileExtension argument string may not include a
leading period (for example, use "aif", not ".aif"); symbolic links (aliases or shortcuts) and home
directory symbols (~) are expanded into complete paths.

Arguments: (1) name, (2) directoryFilePath, (3) fileExtension, (4) selectionString {'randomChoice',
'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: ds, ., aif, rw

 ParameterObject Reference and Examples

 132

C.1.19. envelopeGeneratorAdsr (ega)

envelopeGeneratorAdsr, scaleString, edgeString, eventCount, parameterObject, parameterObject,
parameterObject, parameterObject, parameterObject, parameterObject, min, max

Description: Generates a sequence of dynamic envelopes with durations controlled by a Generator
Parameter Object. Envelope duration is specified by the duration ParameterObject; all values are
interpreted in seconds. The scaleString parameter determines if shape values are interpreted as
proportional values or absolute values in seconds. The number of envelopes generated is controlled
by the eventCount parameter; envelopes are looped when necessary. The minimum and maximum
envelope value is scaled within the range designated by min and max; min and max are selected once
per envelope; min and max may be specified with ParameterObjects.

Arguments: (1) name, (2) scaleString {'absolute', 'proportional'}, (3) edgeString {'loop', 'single'}, (4)
eventCount, (5) parameterObject {duration Generator}, (6) parameterObject {attack Generator},
(7) parameterObject {decay Generator}, (8) parameterObject {sustain Generator}, (9)
parameterObject {release Generator}, (10) parameterObject {sustain scalar Generator}, (11) min,
(12) max

Sample Arguments: ega, proportional, l, 100, (c,40), (c,2), (c,4), (c,2), (c,4), (c,0.5),
0, 1

Example C-31. envelopeGeneratorAdsr Demonstration 1

envelopeGeneratorAdsr, proportional, loop, 100, (constant, 40), (constant, 2),
(constant, 4), (constant, 2), (constant, 4), (constant, 0.5), (constant, 0),
(constant, 1)

Example C-32. envelopeGeneratorAdsr Demonstration 2

envelopeGeneratorAdsr, proportional, loop, 100, (basketGen, orderedCyclic,
(60,40,20)), (basketGen, orderedCyclic, (1,5,10)), (basketGen, orderedCyclic,
(10,5,1)), (constant, 6), (constant, 2), (basketGen, orderedCyclic,

 ParameterObject Reference and Examples

 133

(0.2,0.5,0.7)), (constant, 0), (constant, 1)

Example C-33. envelopeGeneratorAdsr Demonstration 3

envelopeGeneratorAdsr, absolute, loop, 100, (basketGen, orderedCyclic,
(60,40,20)), (basketGen, orderedCyclic, (1,5,10)), (basketGen, orderedCyclic,
(10,5,1)), (constant, 6), (constant, 2), (basketGen, orderedCyclic,
(0.2,0.5,0.7)), (constant, 0), (constant, 1)

C.1.20. envelopeGeneratorTrapezoid (egt)

envelopeGeneratorTrapezoid, scaleString, edgeString, eventCount, parameterObject,
parameterObject, parameterObject, parameterObject, parameterObject, min, max

Description: Generates a sequence of dynamic envelopes with durations controlled by a Generator
Parameter Object. Envelope duration is specified by the duration ParameterObject; all values are
interpreted in seconds. The scaleString parameter determines if shape values are interpreted as
proportional values or absolute values in seconds. The number of envelopes generated is controlled
by the eventCount parameter; envelopes are looped when necessary. The minimum and maximum
envelope value is scaled within the range designated by min and max; min and max are selected once
per envelope; min and max may be specified with ParameterObjects.

Arguments: (1) name, (2) scaleString {'absolute', 'proportional'}, (3) edgeString {'loop', 'single'}, (4)
eventCount, (5) parameterObject {duration Generator}, (6) parameterObject {ramp up Generator},
(7) parameterObject {width max Generator}, (8) parameterObject {ramp down Generator}, (9)
parameterObject {width min Generator}, (10) min, (11) max

Sample Arguments: egt, proportional, l, 100, (c,40), (c,0.5), (c,4), (c,2), (c,4), 0, 1

Example C-34. envelopeGeneratorTrapezoid Demonstration 1

envelopeGeneratorTrapezoid, proportional, loop, 100, (constant, 40),

 ParameterObject Reference and Examples

 134

(constant, 0.5), (constant, 4), (constant, 2), (constant, 4), (constant, 0),
(constant, 1)

Example C-35. envelopeGeneratorTrapezoid Demonstration 2

envelopeGeneratorTrapezoid, proportional, loop, 100, (basketGen,
orderedCyclic, (60,40,20)), (basketGen, orderedCyclic, (1,5,10)), (constant,
6), (constant, 8), (constant, 2), (constant, 0), (constant, 1)

Example C-36. envelopeGeneratorTrapezoid Demonstration 3

envelopeGeneratorTrapezoid, absolute, loop, 100, (basketGen, orderedCyclic,
(60,40,20)), (basketGen, orderedCyclic, (1,5,10)), (constant, 6), (constant,
8), (constant, 2), (constant, 0), (constant, 1)

C.1.21. envelopeGeneratorUnit (egu)

envelopeGeneratorUnit, edgeString, eventCount, parameterObject, parameterObject,
parameterObject, min, max

Description: Generates a sequence of dynamic envelopes with durations controlled by a Generator
Parameter Object. Envelope duration is specified by the duration ParameterObject; all values are
interpreted in seconds. The scaleString parameter determines if shape values are interpreted as
proportional values or absolute values in seconds. The number of envelopes generated is controlled
by the eventCount parameter; envelopes are looped when necessary. The minimum and maximum
envelope value is scaled within the range designated by min and max; min and max are selected once
per envelope; min and max may be specified with ParameterObjects.

Arguments: (1) name, (2) edgeString {'loop', 'single'}, (3) eventCount, (4) parameterObject {duration
Generator}, (5) parameterObject {sustain center unit Generator}, (6) parameterObject {sustain
width unit Generator}, (7) min, (8) max

 ParameterObject Reference and Examples

 135

Sample Arguments: egu, l, 100, (c,40), (c,0.4), (c,0.2), 0, 1

Example C-37. envelopeGeneratorUnit Demonstration 1

envelopeGeneratorUnit, loop, 100, (constant, 40), (constant, 0.4), (constant,
0.2), (constant, 0), (constant, 1)

Example C-38. envelopeGeneratorUnit Demonstration 2

envelopeGeneratorUnit, loop, 100, (basketGen, orderedCyclic, (60,40,20)),
(basketGen, orderedCyclic, (0.1,0.4,0.6)), (basketGen, orderedCyclic,
(0.1,0.5,0.8)), (constant, 0), (constant, 1)

C.1.22. funnelBinary (fb)

funnelBinary, thresholdMatchString, parameterObject, parameterObject, parameterObject,
parameterObject

Description: A dynamic, two-part variable funnel. Given values produced by two boundary
parameterObjects and a threshold ParameterObject, the output of a Generator ParameterObject
value is shifted to one of the boundaries (or the threshold) depending on the relationship of the
generated value to the threshold. If the generated value is equal to the threshold, the value may be
shifted to the upper or lower value, or retain the threshold value.

Arguments: (1) name, (2) thresholdMatchString {'upper', 'lower', 'match'}, (3) parameterObject
{threshold}, (4) parameterObject {first boundary}, (5) parameterObject {second boundary}, (6)
parameterObject {generator of masked values}

Sample Arguments: fb, u, (bpl,e,s,((0,0),(120,1))), (ws,e,60,0,0.5,0), (wc,e,90,0,0.5,1),
(ru,0,1)

 ParameterObject Reference and Examples

 136

Example C-39. funnelBinary Demonstration 1

funnelBinary, upper, (breakPointLinear, event, single, ((0,0),(120,1))),
(waveSine, event, (constant, 60), 0, (constant, 0.5), (constant, 0)),
(waveCosine, event, (constant, 90), 0, (constant, 0.5), (constant, 1)),
(randomUniform, (constant, 0), (constant, 1))

Example C-40. funnelBinary Demonstration 2

funnelBinary, match, (constant, 0.2), (breakPointLinear, event, loop,
((0,0),(60,0.5))), (breakPointLinear, event, loop, ((0,1),(60,0.5))),
(waveSine, event, (constant, 20), 0, (constant, 0), (constant, 1))

C.1.23. fibonacciSeries (fs)

fibonacciSeries, start, length, min, max, selectionString

Description: Provides values derived from a contigous section of the Fibonacci series. A section is
built from an initial value (start) and as many additional values as specified by the length argument.
Negative length values reverse the direction of the series. The resulting list of values is normalized
within the unit interval. Values are chosen from this list using the selector specified by the
selectionString argument. After selection, this value is scaled within the range designated by min and
max; min and max may be specified with ParameterObjects.

Arguments: (1) name, (2) start, (3) length, (4) min, (5) max, (6) selectionString {'randomChoice',
'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: fs, 200, 20, 0, 1, oc

 ParameterObject Reference and Examples

 137

Example C-41. fibonacciSeries Demonstration 1

fibonacciSeries, 200, 20, (constant, 0), (constant, 1), orderedCyclic

Example C-42. fibonacciSeries Demonstration 2

fibonacciSeries, 40, 20, (constant, 0), (constant, 1), randomChoice

Example C-43. fibonacciSeries Demonstration 3

fibonacciSeries, 400, 20, (waveSine, event, (constant, 35), 0, (constant,
0.5), (constant, 0)), (cyclicGen, upDown, 0.6, 1, 0.03), orderedOscillate

C.1.24. henonBasket (hb)

henonBasket, xInit, yInit, parameterObject, parameterObject, valueCount, valueSelect, min, max,
selectionString

Description: Performs the Henon map, a non-linear two-dimensional discrete deterministic
dynamical system. For some parameter settings the system exhibits chaotic behavior, for others,
periodic behavior; small changes in initial parameters may demonstrate the butterfly effect. Variables
x and y describe coordinate positions; values a (alpha) and b (beta) configure the system. As the
output range cannot be predicted, as many values as specified by the valueCount argument, as well

 ParameterObject Reference and Examples

 138

as any combination of variables with the valueSelect argument, are generated and stored at
initialization. These values are then scaled within the unit interval. Values are chosen from this list
using the selector specified by the selectionString argument. After selection, this value is scaled
within the range designated by min and max; min and max may be specified with ParameterObjects.
Note: some values may cause unexpected results; alpha values should not exceed 2.0.

Arguments: (1) name, (2) xInit, (3) yInit, (4) parameterObject {a value}, (5) parameterObject {b
value}, (6) valueCount, (7) valueSelect {'x', 'y', 'xy', 'yx'}, (8) min, (9) max, (10) selectionString
{'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: hb, 0.5, 0.5, 1.4, 0.3, 1000, x, 0, 1, oc

Example C-44. henonBasket Demonstration 1

henonBasket, 0.5, 0.5, (constant, 1.4), (constant, 0.3), 1000, x, (constant,
0), (constant, 1), orderedCyclic

Example C-45. henonBasket Demonstration 2

henonBasket, 0.5, 0.5, (constant, 0.5), (constant, 0.8), 1000, yx, (constant,
0), (constant, 1), orderedCyclic

Example C-46. henonBasket Demonstration 3

 ParameterObject Reference and Examples

 139

henonBasket, 0.5, 0.5, (cyclicGen, upDown, 0, 0.9, 0.05), (constant, 0.3),
1000, xy, (constant, 0), (constant, 1), orderedCyclic

C.1.25. iterateCross (ic)

iterateCross, parameterObject, parameterObject, parameterObject

Description: Produces a single value cross faded between two values created by two Generator
ParameterObjects in parallel. The cross fade is expressed as a number within the unit interval, where
a value of zero is the output of the first Generator, a value of one is the output of the second
Generator, and all other values are proportionally and linearly cross faded.

Arguments: (1) name, (2) parameterObject {first source Generator}, (3) parameterObject {second
source Generator}, (4) parameterObject {interpolation between first and second Generator}

Sample Arguments: ic, (ws,e,30,0,0,1), (wp,e,30,0,0,1), (bpl,e,l,((0,0),(120,1)))

Example C-47. iterateCross Demonstration 1

iterateCross, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (wavePulse, event, (constant, 30), 0, (constant, 0), (constant, 1)),
(breakPointLinear, event, loop, ((0,0),(120,1)))

Example C-48. iterateCross Demonstration 2

iterateCross, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (randomUniform, (constant, 0), (constant, 1)), (breakPointLinear, event,
loop, ((0,0),(120,1)))

 ParameterObject Reference and Examples

 140

C.1.26. iterateGroup (ig)

iterateGroup, parameterObject, parameterObject

Description: Allows the output of a source ParameterObject to be grouped (a value is held and
repeated a certain number of times), to be skipped (a number of values are generated and discarded),
or to be bypassed. A numeric value from a control ParameterObject is used to determine the source
ParameterObject behavior. A positive value (rounded to the nearest integer) will cause the value
provided by the source ParameterObject to be repeated that many times. After output of these
values, a new control value is generated. A negative value (rounded to the nearest integer) will cause
that many number of values to be generated and discarded from the source ParameterObject, and
force the selection of a new control value. A value of 0 is treated as a bypass, and forces the
selection of a new control value. Note: if the control ParameterObject fails to produce positive
values after many attempts, a value will be automatically generated from the selected
ParameterObject.

Arguments: (1) name, (2) parameterObject {source Generator}, (3) parameterObject {group or skip
control Generator}

Sample Arguments: ig, (ws,e,30,0,0,1), (bg,rc,(-3,1,-1,5))

Example C-49. iterateGroup Demonstration 1

iterateGroup, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (basketGen, randomChoice, (-3,1,-1,5))

Example C-50. iterateGroup Demonstration 2

iterateGroup, (waveCosine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (waveTriangle, event, (constant, 20), 0, (constant, 4), (constant, -1))

 ParameterObject Reference and Examples

 141

C.1.27. iterateHold (ih)

iterateHold, parameterObject, parameterObject, parameterObject, selectionString

Description: Allows a variable number of outputs from a source ParameterObject, collected and
stored in a list, to be held and selected. Values are chosen from this list using the selector specified
by the selectionString argument. A numeric value from a size ParameterObject is used to determine
how many values are drawn from the source ParameterObject. A numeric value from a refresh
count ParameterObject is used to determine how many events must pass before a new size value is
drawn and the source ParameterObject is used to refill the stored list. A refresh value of zero, once
encountered, will prohibit any further changes to the stored list. Note: if the size ParameterObject
fails to produce a non-zero value for the first event, an alternative count value will be assigned.

Arguments: (1) name, (2) parameterObject {source Generator}, (3) parameterObject {size
Generator}, (4) parameterObject {refresh count Generator}, (5) selectionString {'randomChoice',
'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: ih, (ru,0,1), (bg,rc,(2,3,4)), (bg,oc,(12,24)), oc

Example C-51. iterateHold Demonstration 1

iterateHold, (randomUniform, (constant, 0), (constant, 1)), (basketGen,
randomChoice, (2,3,4)), (basketGen, orderedCyclic, (12,24)), orderedCyclic

Example C-52. iterateHold Demonstration 2

iterateHold, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (basketGen, randomChoice, (3,4,5)), (basketGen, orderedCyclic,
(6,12,18)), orderedOscillate

 ParameterObject Reference and Examples

 142

C.1.28. iterateSelect (is)

iterateSelect, parameterObject, parameterObject, parameterObject, parameterObject

Description: Allows a variable number of outputs from a source ParameterObject, collected and
stored in a list, to be selected with values within the unit interval produced by an embedded
ParameterObject. Values that exceed the unit interval are limited within the unit interval. Values are
chosen from this list using the selector specified by the selectionString argument. A numeric value
from a size ParameterObject is used to determine how many values are drawn from the source
ParameterObject. A numeric value from a refresh count ParameterObject is used to determine how
many events must pass before a new size value is drawn and the source ParameterObject is used to
refill the stored list. A refresh value of zero, once encountered, will prohibit any further changes to
the stored list. Note: if the size ParameterObject fails to produce a non-zero value for the first event,
an alternative count value will be assigned.

Arguments: (1) name, (2) parameterObject {source Generator}, (3) parameterObject {size
Generator}, (4) parameterObject {refresh count Generator}, (5) parameterObject {selection
Generator}

Sample Arguments: is, (ru,0,1), (bg,rc,(10,11,12)), (bg,oc,(12,24)), (rb,0.15,0.15,0,1)

Example C-53. iterateSelect Demonstration 1

iterateSelect, (randomUniform, (constant, 0), (constant, 1)), (basketGen,
randomChoice, (10,11,12)), (basketGen, orderedCyclic, (12,24)), (randomBeta,
0.15, 0.15, (constant, 0), (constant, 1))

Example C-54. iterateSelect Demonstration 2

iterateSelect, (listPrime, 20, 20, integer, orderedCyclic), (constant, 20),
(constant, 20), (randomBeta, 0.2, 0.2, (constant, 0), (constant, 1))

 ParameterObject Reference and Examples

 143

C.1.29. iterateWindow (iw)

iterateWindow, parameterObjectList, parameterObject, selectionString

Description: Allows a ParameterObject, selected from a list of ParameterObjects, to generate values,
to skip values (a number of values are generated and discarded), or to bypass value generation. A
numeric value from a control ParameterObject is used to determine the selected ParameterObject
behavior. A positive value (rounded to the nearest integer) will cause the selected ParameterObject
to produce that many new values. After output of these values, a new ParameterObject is selected. A
negative value (rounded to the nearest integer) will cause the selected ParameterObject to generate
and discard that many values, and force the selection of a new ParameterObject. A value equal to 0
is treated as a bypass, and forces the selection of a new ParameterObject. ParameterObject selection
is determined with a string argument for a selection method. Note: if the control ParameterObject
fails to produce positive values after many attempts, a value will be automatically generated from the
selected ParameterObject.

Arguments: (1) name, (2) parameterObjectList {a list of Generators}, (3) parameterObject {generate
or skip control Generator}, (4) selectionString {'randomChoice', 'randomWalk', 'randomPermutate',
'orderedCyclic', 'orderedOscillate'}

Sample Arguments: iw, ((ru,0,1),(wt,e,30,0,0,1)), (bg,oc,(8,4,-2)), oc

Example C-55. iterateWindow Demonstration 1

iterateWindow, ((randomUniform, (constant, 0), (constant, 1)), (waveTriangle,
event, (constant, 30), 0, (constant, 0), (constant, 1))), (basketGen,
orderedCyclic, (8,4,-2)), orderedCyclic

Example C-56. iterateWindow Demonstration 2

iterateWindow, ((randomUniform, (constant, 1), (accumulator, 0, (constant,
-0.2))), (waveSine, event, (constant, 15), 0.25, (accumulator, 1, (constant,

 ParameterObject Reference and Examples

 144

0.4)), (constant, 1))), (basketGen, orderedCyclic, (8,8,-11)), randomChoice

C.1.30. lorenzBasket (lb)

lorenzBasket, xInit, yInit, zInit, parameterObject, parameterObject, parameterObject, valueCount,
valueSelect, min, max, selectionString

Description: Performs the Lorenz attractor, a non-linear three-dimensional discrete deterministic
dynamical system. The equations are derived from a simplified model of atmospheric convection
rolls. For some parameter settings the system exhibits chaotic behavior, for others, periodic
behavior; small changes in initial parameters may demonstrate the butterfly effect. Variables x, y, and
z are proportional to convective intensity, temperature difference between descending and ascending
currents, and the difference in vertical temperature profile from linearity. Values s (sigma), r, and b
are the Prandtl number, the quotient of the Rayleigh number and the critical Rayleigh number, and
the geometric factor. As the output range cannot be predicted, as many values as specified by the
valueCount argument, as well as any combination of variables with the valueSelect argument, are
generated and stored at initialization. These values are then scaled within the unit interval. Values are
chosen from this list using the selector specified by the selectionString argument. After selection,
this value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: some values may cause unexpected results; r should not exceed 90.

Arguments: (1) name, (2) xInit, (3) yInit, (4) zInit, (5) parameterObject {r value}, (6)
parameterObject {s value}, (7) parameterObject {b value}, (8) valueCount, (9) valueSelect {'x', 'y',
'z', 'xy', 'xz', 'yx', 'yz', 'zx', 'zy', 'xyz', 'xzy', 'yxz', 'yzx', 'zxy', 'zyx'}, (10) min, (11) max, (12)
selectionString {'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic',
'orderedOscillate'}

Sample Arguments: lb, 1.0, 1.0, 1.0, 28, 10, 2.67, 1000, xyz, 0, 1, oc

Example C-57. lorenzBasket Demonstration 1

lorenzBasket, 1.0, 1.0, 1.0, (constant, 28), (constant, 10), (constant, 2.67),
1000, xyz, (constant, 0), (constant, 1), orderedCyclic

 ParameterObject Reference and Examples

 145

Example C-58. lorenzBasket Demonstration 2

lorenzBasket, 0.5, 1.5, 10, (cyclicGen, down, 1, 80, 1.5), (constant, 10),
(constant, 12.4), 1000, x, (constant, 0), (constant, 1), orderedCyclic

C.1.31. logisticMap (lm)

logisticMap, initValue, parameterObject, min, max

Description: Performs the logistic map, or the Verhulst population growth equation. The logistic
map is a non-linear one-dimensional discrete deterministic dynamical system. For some parameter
settings the system exhibits chaotic behavior, for others, periodic behavior; small changes in initial
parameters may demonstrate the butterfly effect. Variable x represents the population value; value p
represents a combined rate for reproduction and starvation. The p argument allows the user to
provide a static or dynamic value to the equation. Certain p-value presets can be provided with
strings: 'bi', 'quad', or 'chaos'. If a number is provided for p, the value will be used to create a
constant ParameterObject. The equation outputs values within the unit interval. These values are
scaled within the range designated by min and max; min and max may be specified with
ParameterObjects.

Arguments: (1) name, (2) initValue, (3) parameterObject {p value}, (4) min, (5) max

Sample Arguments: lm, 0.5, (wt,e,90,0,2.75,4), 0, 1

Example C-59. logisticMap Demonstration 1

logisticMap, 0.5, (waveTriangle, event, (constant, 90), 0, (constant, 2.75),
(constant, 4)), (constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 146

Example C-60. logisticMap Demonstration 2

logisticMap, 0.1, (basketGen, randomWalk, (3,3,3,3.2,3.2,3.2,3.9,3.9,3.9)),
(constant, 0), (constant, 1)

Example C-61. logisticMap Demonstration 3

logisticMap, 0.5, (iterateGroup, (basketGen, randomChoice, (3,3.2,3.57)),
(basketGen, randomChoice, (5,7,9))), (breakPointLinear, event, loop,
((0,0.5),(60,0),(120,0.5))), (breakPointLinear, event, loop, ((0,0.5),(40,3)))

C.1.32. listPrime (lp)

listPrime, start, length, format, selectionString

Description: Produces a segment of prime (pseudoprime) integers defined by a positive or negative
start value and a length. Depending on format type, the resulting segment can be given as an integer,
width, unit, or binary segment. Values are chosen from this list using the selector specified by the
selectionString argument.

Arguments: (1) name, (2) start, (3) length, (4) format {'integer', 'width', 'unit', 'binary'}, (5)
selectionString {'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic',
'orderedOscillate'}

Sample Arguments: lp, 2, 50, int, oc

 ParameterObject Reference and Examples

 147

Example C-62. listPrime Demonstration 1

listPrime, 2, 50, integer, orderedCyclic

Example C-63. listPrime Demonstration 2

listPrime, -100, 100, width, randomChoice

Example C-64. listPrime Demonstration 3

listPrime, 200, -30, binary, randomPermutate

C.1.33. mask (m)

mask, boundaryString, parameterObject, parameterObject, parameterObject

Description: Given values produced by two boundary ParameterObjects in parallel, the Generator
ParameterObject value is fit within these values. The fit is determined by the boundaryString: limit
will fix the value at the nearest boundary; wrap will wrap the value through the range defined by the
boundaries; reflect will bounce values in the opposite direction through the range defined by the
boundaries.

 ParameterObject Reference and Examples

 148

Arguments: (1) name, (2) boundaryString {'limit', 'wrap', 'reflect'}, (3) parameterObject {first
boundary}, (4) parameterObject {second boundary}, (5) parameterObject {generator of masked
values}

Sample Arguments: m, l, (ws,e,60,0,0.5,0), (wc,e,90,0,0.5,1), (ru,0,1)

Example C-65. mask Demonstration 1

mask, limit, (waveSine, event, (constant, 60), 0, (constant, 0.5), (constant,
0)), (waveCosine, event, (constant, 90), 0, (constant, 0.5), (constant, 1)),
(randomUniform, (constant, 0), (constant, 1))

Example C-66. mask Demonstration 2

mask, wrap, (breakPointLinear, event, loop, ((0,0),(90,0.5))),
(breakPointLinear, event, loop, ((0,1),(90,0.5))), (waveSine, event,
(constant, 30), 0, (constant, 0), (constant, 1))

Example C-67. mask Demonstration 3

mask, reflect, (waveSine, event, (constant, 60), 0.25, (constant, 0.7),
(constant, 1)), (breakPointLinear, event, loop, ((0,0.4),(90,0),(120,0.4))),
(waveSine, event, (constant, 24), 0, (constant, 0), (constant, 1))

 ParameterObject Reference and Examples

 149

C.1.34. markovGeneratorAnalysis (mga)

markovGeneratorAnalysis, parameterObject, valueCount, maxAnalysisOrder, parameterObject

Description: Produces values by means of a Markov analysis of values provided by a source
Generator ParameterObject; the analysis of these values is used with a dynamic transition order
Generator to produce new values. The number of values drawn from the source Generator is
specified with the valueCount argument. The maximum order of analysis is specified with the
maxAnalysisOrder argument. Markov transition order is specified by a ParameterObject that
produces values between 0 and the maximum order available in the Markov transition string. If
generated-orders are greater than those available, the largest available transition order will be used.
Floating-point order values are treated as probabilistic weightings: for example, a transition of 1.5
offers equal probability of first or second order selection.

Arguments: (1) name, (2) parameterObject {source Generator}, (3) valueCount, (4)
maxAnalysisOrder, (5) parameterObject {output order value}

Sample Arguments: mga, (ws,e,30,0,0,1), 30, 2, (mv,a{1}b{0}c{2}:{a=10|b=1|c=2},(c,0))

Example C-68. markovGeneratorAnalysis Demonstration 1

markovGeneratorAnalysis, (waveSine, event, (constant, 30), 0, (constant, 0),
(constant, 1)), 30, 2, (markovValue, a{1}b{0}c{2}:{a=10|b=1|c=2}, (constant,
0))

Example C-69. markovGeneratorAnalysis Demonstration 2

markovGeneratorAnalysis, (breakPointPower, event, loop,
((0,0.5),(10,1),(15,0)), 2), 15, 2, (basketGen, randomWalk, (0,1,2,2,1))

 ParameterObject Reference and Examples

 150

Example C-70. markovGeneratorAnalysis Demonstration 3

markovGeneratorAnalysis, (basketGen, orderedCyclic,
(0.3,0.3,0.3,0,0.9,0.9,0.6)), 28, 2, (markovValue,
a{1}b{0}c{2}:{a=10|b=1|c=2}, (constant, 0))

C.1.35. maskReject (mr)

maskReject, boundaryString, parameterObject, parameterObject, parameterObject

Description: Given values produced by two boundary ParameterObjects in parallel, the Generator
ParameterObject value is fit outside of these values. The fit is determined by the boundaryString:
limit will fix the value at the nearest boundary; wrap will wrap the value through the range defined
by the boundaries; reflect will bounce values in the opposite direction through the range defined by
the boundaries.

Arguments: (1) name, (2) boundaryString {'limit', 'wrap', 'reflect'}, (3) parameterObject {first
boundary}, (4) parameterObject {second boundary}, (5) parameterObject {generator of masked
values}

Sample Arguments: mr, l, (ws,e,60,0,0.5,0), (wc,e,90,0,0.5,1), (ru,0,1)

Example C-71. maskReject Demonstration 1

maskReject, limit, (waveSine, event, (constant, 60), 0, (constant, 0.5),
(constant, 0)), (waveCosine, event, (constant, 90), 0, (constant, 0.5),
(constant, 1)), (randomUniform, (constant, 0), (constant, 1))

 ParameterObject Reference and Examples

 151

Example C-72. maskReject Demonstration 2

maskReject, wrap, (breakPointLinear, event, loop, ((0,0),(90,0.5))),
(breakPointLinear, event, loop, ((0,1),(90,0.5))), (waveSine, event,
(constant, 30), 0, (constant, 0), (constant, 1))

Example C-73. maskReject Demonstration 3

maskReject, reflect, (waveSine, event, (constant, 60), 0.25, (constant, 0.7),
(constant, 1)), (breakPointLinear, event, loop, ((0,0.4),(90,0),(120,0.4))),
(waveSine, event, (constant, 24), 0, (constant, 0), (constant, 1))

C.1.36. maskScale (ms)

maskScale, parameterObject, valueCount, min, max, selectionString

Description: Given values produced by two boundary ParameterObjects in parallel, the Generator
ParameterObject value is scaled within these values. A collection of values created by the Generator
ParameterObject are stored. The resulting list of values is normalized within the unit interval. Values
are chosen from this list using the selector specified by the selectionString argument. After selection,
this value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects.

Arguments: (1) name, (2) parameterObject {source Generator}, (3) valueCount, (4) min, (5) max, (6)
selectionString {'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic',
'orderedOscillate'}

Sample Arguments: ms, (lp,100,120,w,oc), 120, (bphc,e,l,((0,0),(120,-3))), 3, oc

 ParameterObject Reference and Examples

 152

Example C-74. maskScale Demonstration 1

maskScale, (listPrime, 100, 120, width, orderedCyclic), 120,
(breakPointHalfCosine, event, loop, ((0,0),(120,-3))), (constant, 3),
orderedCyclic

C.1.37. markovValue (mv)

markovValue, transitionString, parameterObject

Description: Produces values by means of a Markov transition string specification and a dynamic
transition order generator. Markov transition order is specified by a ParameterObject that produces
values between 0 and the maximum order available in the Markov transition string. If
generated-orders are greater than those available, the largest available transition order will be used.
Floating-point order values are treated as probabilistic weightings: for example, a transition of 1.5
offers equal probability of first or second order selection.

Arguments: (1) name, (2) transitionString, (3) parameterObject {order value}

Sample Arguments: mv, a{.2}b{.5}c{.8}d{0}:{a=5|b=4|c=7|d=1}, (c,0)

Example C-75. markovValue Demonstration 1

markovValue, a{.2}b{.5}c{.8}d{0}:{a=5|b=4|c=7|d=1}, (constant, 0)

 ParameterObject Reference and Examples

 153

Example C-76. markovValue Demonstration 2

markovValue, a{0}b{.2}c{.4}d{.6}e{.8}f{1}:{a=3|b=6|c=8|d=8|e=5|f=2}a:{b=3}b:{a
=2|c=4}c:{b=3|d=5}d:{a=1|c=4|e=3}e:{d=3|f=2}f:{e=2}a:b:{c=3}b:a:{b=2}b:c:{d=4}
c:b:{a=2|c=1}c:d:{a=1|c=1|e=3}d:a:{b=1}d:c:{b=3|d=1}d:e:{d=1|f=2}e:d:{c=3}e:f:
{e=2}f:e:{d=2}, (breakPointLinear, event, single, ((0,0),(119,2)))

C.1.38. noise (n)

noise, resolution, parameterObject, min, max

Description: Fractional noise (1/fn) Generator, capable of producing states and transitions between
1/f white, pink, brown, and black noise. Resolution is an integer that describes how many generators
are used. The gamma argument determines what type of noise is created. All gamma values are
treated as negative. A gamma of 0 is white noise; a gamma of 1 is pink noise; a gamma of 2 is brown
noise; and anything greater is black noise. Gamma can be controlled by a dynamic ParameterObject.
The value produced by the noise generator is scaled within the unit interval. This normalized value is
then scaled within the range designated by min and max; min and max may be specified by
ParameterObjects.

Arguments: (1) name, (2) resolution, (3) parameterObject {gamma value as string or number}, (4)
min, (5) max

Sample Arguments: n, 100, pink, 0, 1

Example C-77. noise Demonstration 1

noise, 100, (constant, 1), (constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 154

Example C-78. noise Demonstration 2

noise, 100, (constant, 3), (constant, 0), (constant, 1)

Example C-79. noise Demonstration 3

noise, 100, (waveTriangle, event, (constant, 120), 0, (constant, 1),
(constant, 3)), (constant, 0), (constant, 1)

Example C-80. noise Demonstration 4

noise, 100, (basketGen, randomChoice, (3,3,3,3,2,1)), (constant, 0),
(constant, 1)

C.1.39. operatorAdd (oa)

operatorAdd, parameterObject, parameterObject

Description: Adds the value of the first ParameterObject to the second ParameterObject.

Arguments: (1) name, (2) parameterObject {first value}, (3) parameterObject {second value}

Sample Arguments: oa, (ws,e,30,0,0,1), (a,0.5,(c,0.03))

 ParameterObject Reference and Examples

 155

Example C-81. operatorAdd Demonstration 1

operatorAdd, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (accumulator, 0.5, (constant, 0.03))

C.1.40. operatorCongruence (oc)

operatorCongruence, parameterObject, parameterObject

Description: Produces the congruent value of the first ParameterObject object as the modulus of the
second ParameterObject. A modulus by zero, if encountered, returns the value of the first
ParameterObject unaltered.

Arguments: (1) name, (2) parameterObject {first value}, (3) parameterObject {second value}

Sample Arguments: oc, (ws,e,30,0,0,1), (a,0.5,(c,0.03))

Example C-82. operatorCongruence Demonstration 1

operatorCongruence, (waveSine, event, (constant, 30), 0, (constant, 0),
(constant, 1)), (accumulator, 0.5, (constant, 0.03))

C.1.41. operatorDivide (od)

operatorDivide, parameterObject, parameterObject

Description: Divides the value of the first ParameterObject object by the second ParameterObject.
Division by zero, if encountered, returns the value of the first Generator.

Arguments: (1) name, (2) parameterObject {first value}, (3) parameterObject {second value}

Sample Arguments: od, (ws,e,30,0,0,1), (a,0.5,(c,0.03))

 ParameterObject Reference and Examples

 156

Example C-83. operatorDivide Demonstration 1

operatorDivide, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (accumulator, 0.5, (constant, 0.03))

C.1.42. operatorMultiply (om)

operatorMultiply, parameterObject, parameterObject

Description: Multiplies the value of the first ParameterObject by the second.

Arguments: (1) name, (2) parameterObject {first value}, (3) parameterObject {second value}

Sample Arguments: om, (ws,e,30,0,0,1), (a,0.5,(c,0.03))

Example C-84. operatorMultiply Demonstration 1

operatorMultiply, (waveSine, event, (constant, 30), 0, (constant, 0),
(constant, 1)), (accumulator, 0.5, (constant, 0.03))

C.1.43. oneOver (oo)

oneOver, parameterObject

Description: Produces the value of one over the value of a ParameterObject. Divisors of zero are
resolved to 1.

Arguments: (1) name, (2) parameterObject {value}

Sample Arguments: oo, (ws,e,30,0,0.5,2)

 ParameterObject Reference and Examples

 157

Example C-85. oneOver Demonstration 1

oneOver, (waveSine, event, (constant, 30), 0, (constant, 0.5), (constant, 2))

C.1.44. operatorPower (op)

operatorPower, parameterObject, parameterObject

Description: Raises the value of the first ParameterObject to the power of the second
ParameterObject.

Arguments: (1) name, (2) parameterObject {first value}, (3) parameterObject {second value}

Sample Arguments: op, (ws,e,30,0,0,1), (a,0.5,(c,0.03))

Example C-86. operatorPower Demonstration 1

operatorPower, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1)), (accumulator, 0.5, (constant, 0.03))

C.1.45. operatorSubtract (os)

operatorSubtract, parameterObject, parameterObject

Description: Subtracts the value of the second ParameterObject from the first ParameterObject.

Arguments: (1) name, (2) parameterObject {first value}, (3) parameterObject {second value}

Sample Arguments: os, (ws,e,30,0,0,1), (a,0.5,(c,0.03))

 ParameterObject Reference and Examples

 158

Example C-87. operatorSubtract Demonstration 1

operatorSubtract, (waveSine, event, (constant, 30), 0, (constant, 0),
(constant, 1)), (accumulator, 0.5, (constant, 0.03))

C.1.46. pathRead (pr)

pathRead, pathFormatString

Description: Extracts pitch information from the current Multiset within a Texture's Path. Data can
be presented in a variety of formats including representations of the Multiset as 'forte', 'mason', or
data on the current active pitch as 'fq' (frequency), 'ps' (psReal), 'midi' (midi pitch values), 'pch'
(Csound pitch octave format), or 'name' (alphabetic note names).

Arguments: (1) name, (2) pathFormatString {'forte', 'mason', 'fq', 'ps', 'midi', 'pch', 'name'}

Sample Arguments: pr, forte

C.1.47. quantize (q)

quantize, parameterObject, parameterObject, stepCount, parameterObject, parameterObject

Description: Dynamic grid size and grid position quantization. For each value provided by the
source ParameterObject, a grid is created. This grid is made by taking the number of steps specified
by the stepCount integer from the step width Generator ParameterObject. The absolute value of
these widths are used to create a grid above and below the reference value, with grid steps taken in
order. The value provided by the source ParameterObject is found within this grid, and pulled to the
nearest grid line. The degree of pull can be a dynamically allocated with a unit-interval quantize pull
ParameterObject. A value of 1 forces all values to snap to the grid; a value of .5 will cause a
weighted attraction.

Arguments: (1) name, (2) parameterObject {grid reference value Generator}, (3) parameterObject
{step width Generator}, (4) stepCount, (5) parameterObject {unit interval measure of quantize
pull}, (6) parameterObject {source Generator}

Sample Arguments: q, (c,0), (c,0.25), 1, (c,1), (ru,0,1)

 ParameterObject Reference and Examples

 159

Example C-88. quantize Demonstration 1

quantize, (constant, 0), (constant, 0.25), 1, (constant, 1), (randomUniform,
(constant, 0), (constant, 1))

Example C-89. quantize Demonstration 2

quantize, (constant, 0), (basketGen, orderedCyclic, (0.05,0.2)), 2,
(breakPointLinear, event, loop, ((0,1),(120,0.5))), (wavePowerUp, event,
(constant, 20), -2, 0, (constant, 0), (constant, 1))

Example C-90. quantize Demonstration 3

quantize, (waveSine, event, (constant, 60), 0, (constant, 1.25), (constant,
1.75)), (cyclicGen, upDown, 0.3, 0.9, 0.006), 1, (breakPointLinear, event,
loop, ((0,1),(40,1),(120,0.25))), (randomUniform, (constant, 0), (constant,
1))

C.1.48. randomBeta (rb)

randomBeta, alpha, beta, min, max

Description: Provides random numbers between 0 and 1 within a Beta distribution. This value is
scaled within the range designated by min and max; min and max may be specified with

 ParameterObject Reference and Examples

 160

ParameterObjects. Note: alpha and beta values should be between 0 and 1; small alpha values
increase the probability of events on the lower boundary; small beta values increase the probability
of events on the upper boundary.

Arguments: (1) name, (2) alpha, (3) beta, (4) min, (5) max

Sample Arguments: rb, 0.5, 0.5, 0, 1

Example C-91. randomBeta Demonstration 1

randomBeta, 0.5, 0.5, (constant, 0), (constant, 1)

Example C-92. randomBeta Demonstration 2

randomBeta, 0.2, 0.2, (waveSine, event, (constant, 60), 0, (constant, 0),
(constant, 0.5)), (constant, 1)

C.1.49. randomBilateralExponential (rbe)

randomBilateralExponential, lambda, min, max

Description: Provides random numbers between 0 and 1 within a bilateral exponential distribution.
This value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects.

Arguments: (1) name, (2) lambda, (3) min, (4) max

Sample Arguments: rbe, 0.5, 0, 1

 ParameterObject Reference and Examples

 161

Example C-93. randomBilateralExponential Demonstration 1

randomBilateralExponential, 0.5, (constant, 0), (constant, 1)

Example C-94. randomBilateralExponential Demonstration 2

randomBilateralExponential, 10.0, (constant, 0), (constant, 1)

Example C-95. randomBilateralExponential Demonstration 3

randomBilateralExponential, 20.0, (constant, 0), (breakPointPower, event,
loop, ((0,1),(40,0.6),(80,1)), 2)

C.1.50. randomCauchy (rc)

randomCauchy, alpha, mu, min, max

Description: Provides random numbers between 0 and 1 within a Cauchy distribution. This value is
scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: suggested values: alpha = 0.1, mu = 0.5.

Arguments: (1) name, (2) alpha, (3) mu, (4) min, (5) max

 ParameterObject Reference and Examples

 162

Sample Arguments: rc, 0.1, 0.5, 0, 1

Example C-96. randomCauchy Demonstration 1

randomCauchy, 0.1, 0.5, (constant, 0), (constant, 1)

Example C-97. randomCauchy Demonstration 2

randomCauchy, 0.1, 0.1, (constant, 1), (breakPointPower, event, loop,
((0,0),(120,0.3)), 2)

Example C-98. randomCauchy Demonstration 3

randomCauchy, 0.1, 0.9, (constant, 0), (breakPointPower, event, loop,
((0,1),(120,0.3)), 2)

C.1.51. randomExponential (re)

randomExponential, lambda, min, max

Description: Provides random numbers between 0 and 1 within an exponential distribution. This
value is scaled within the range designated by min and max; min and max may be specified with

 ParameterObject Reference and Examples

 163

ParameterObjects. Lambda values should be between 0 and 1. Lambda values control the spread of
values; larger values increase the probability of events near the minimum.

Arguments: (1) name, (2) lambda, (3) min, (4) max

Sample Arguments: re, 0.5, 0, 1

Example C-99. randomExponential Demonstration 1

randomExponential, 0.5, (constant, 0), (constant, 1)

Example C-100. randomExponential Demonstration 2

randomExponential, 100.0, (constant, 0), (constant, 1)

Example C-101. randomExponential Demonstration 3

randomExponential, 10.0, (breakPointLinear, event, loop, ((0,0),(120,0.5))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))

 ParameterObject Reference and Examples

 164

C.1.52. randomGauss (rg)

randomGauss, mu, sigma, min, max

Description: Provides random numbers between 0 and 1 within a Gaussian distribution. This value
is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: suggested values: mu = 0.5, sigma = 0.1.

Arguments: (1) name, (2) mu, (3) sigma, (4) min, (5) max

Sample Arguments: rg, 0.5, 0.1, 0, 1

Example C-102. randomGauss Demonstration 1

randomGauss, 0.5, 0.1, (constant, 0), (constant, 1)

Example C-103. randomGauss Demonstration 2

randomGauss, 0.5, 0.5, (waveSine, event, (constant, 120), 0.25, (constant, 0),
(constant, 0.5)), (waveSine, event, (constant, 120), 0.5, (constant, 1),
(constant, 0.5))

C.1.53. randomInverseExponential (rie)

randomInverseExponential, lambda, min, max

Description: Provides random numbers between 0 and 1 within an inverse exponential distribution.
This value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects.

Arguments: (1) name, (2) lambda, (3) min, (4) max

 ParameterObject Reference and Examples

 165

Sample Arguments: rie, 0.5, 0, 1

Example C-104. randomInverseExponential Demonstration 1

randomInverseExponential, 0.5, (constant, 0), (constant, 1)

Example C-105. randomInverseExponential Demonstration 2

randomInverseExponential, 100.0, (constant, 0), (constant, 1)

Example C-106. randomInverseExponential Demonstration 3

randomInverseExponential, 10.0, (breakPointLinear, event, loop,
((0,0.5),(120,0))), (breakPointLinear, event, loop, ((0,1),(120,0.5)))

C.1.54. randomInverseLinear (ril)

randomInverseLinear, min, max

Description: Provides random numbers between 0 and 1 within a linearly increasing distribution.
This value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: values are distributed more strongly toward max.

 ParameterObject Reference and Examples

 166

Arguments: (1) name, (2) min, (3) max

Sample Arguments: ril, 0, 1

Example C-107. randomInverseLinear Demonstration 1

randomInverseLinear, (constant, 0), (constant, 1)

Example C-108. randomInverseLinear Demonstration 2

randomInverseLinear, (accumulator, 0, (constant, 0.01)), (accumulator, 0.2,
(constant, 0.03))

C.1.55. randomInverseTriangular (rit)

randomInverseTriangular, min, max

Description: Provides random numbers between 0 and 1 within an inverse triangular distribution.
This value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: values are distributed more strongly away from the mean of min and max.

Arguments: (1) name, (2) min, (3) max

Sample Arguments: rit, 0, 1

 ParameterObject Reference and Examples

 167

Example C-109. randomInverseTriangular Demonstration 1

randomInverseTriangular, (constant, 0), (constant, 1)

Example C-110. randomInverseTriangular Demonstration 2

randomInverseTriangular, (constant, 0), (wavePowerDown, event, (constant, 40),
0, 2, (constant, 1), (constant, 0.1))

C.1.56. randomLinear (rl)

randomLinear, min, max

Description: Provides random numbers between 0 and 1 within a linearly decreasing distribution.
This value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: values are distributed more strongly toward min.

Arguments: (1) name, (2) min, (3) max

Sample Arguments: rl, 0, 1

Example C-111. randomLinear Demonstration 1

 ParameterObject Reference and Examples

 168

randomLinear, (constant, 0), (constant, 1)

Example C-112. randomLinear Demonstration 2

randomLinear, (accumulator, 0.5, (constant, -0.01)), (accumulator, 0.5,
(constant, 0.01))

C.1.57. randomTriangular (rt)

randomTriangular, min, max

Description: Provides random numbers between 0 and 1 within a triangular distribution. This value
is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: values are distributed more strongly toward the mean of min and max.

Arguments: (1) name, (2) min, (3) max

Sample Arguments: rt, 0, 1

Example C-113. randomTriangular Demonstration 1

randomTriangular, (constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 169

Example C-114. randomTriangular Demonstration 2

randomTriangular, (constant, 0), (wavePowerDown, event, (constant, 90), 0,
-1.5, (constant, 1), (constant, 0))

C.1.58. randomUniform (ru)

randomUniform, min, max

Description: Provides random numbers between 0 and 1 within an uniform distribution. This value
is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: values are evenly distributed between min and max.

Arguments: (1) name, (2) min, (3) max

Sample Arguments: ru, 0, 1

Example C-115. randomUniform Demonstration 1

randomUniform, (constant, 0), (constant, 1)

Example C-116. randomUniform Demonstration 2

 ParameterObject Reference and Examples

 170

randomUniform, (waveSine, event, (constant, 60), 0, (constant, 0.5),
(constant, 0)), (waveSine, event, (constant, 40), 0.25, (constant, 1),
(constant, 0.5))

C.1.59. randomWeibull (rw)

randomWeibull, alpha, beta, min, max

Description: Provides random numbers between 0 and 1 within a Weibull distribution. This value is
scaled within the range designated by min and max; min and max may be specified with
ParameterObjects. Note: suggested values: alpha = 0.5, beta = 2.0.

Arguments: (1) name, (2) alpha, (3) beta, (4) min, (5) max

Sample Arguments: rw, 0.5, 2.0, 0, 1

Example C-117. randomWeibull Demonstration 1

randomWeibull, 0.5, 2.0, (constant, 0), (constant, 1)

Example C-118. randomWeibull Demonstration 2

randomWeibull, 0.9, 0.1, (constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 171

Example C-119. randomWeibull Demonstration 3

randomWeibull, 0.1, 0.9, (waveSine, event, (constant, 240), 0, (constant, 0),
(constant, 0.4)), (constant, 1)

C.1.60. sampleAndHold (sah)

sampleAndHold, comparison, parameterObject, parameterObject, parameterObject

Description: A sample and hold generator. Produces, and continues to produce, a value drawn from
the source Generator until the trigger Generator produces a value equal to the threshold Generator.
All values are converted to floating-point values.

Arguments: (1) name, (2) comparison, (3) parameterObject {source Generator}, (4)
parameterObject {trigger Generator}, (5) parameterObject {trigger threshold Generator}

Sample Arguments: sah, gt, (ru,0,1), (wsd,e,10,0,0,1), (c,0.5)

Example C-120. sampleAndHold Demonstration 1

sampleAndHold, greaterThan, (randomUniform, (constant, 0), (constant, 1)),
(waveSawDown, event, (constant, 10), 0, (constant, 0), (constant, 1)),
(constant, 0.5)

 ParameterObject Reference and Examples

 172

Example C-121. sampleAndHold Demonstration 2

sampleAndHold, equal, (randomUniform, (constant, 0), (constant, 1)),
(wavePulse, event, (constant, 20), 0, (constant, 0), (constant, 1)),
(constant, 1)

Example C-122. sampleAndHold Demonstration 3

sampleAndHold, equal, (randomUniform, (constant, 0), (constant, 1)),
(waveSawDown, event, (constant, 5), 0, (constant, 0), (constant, 1)),
(constant, 1)

C.1.61. sieveFunnel (sf)

sieveFunnel, logicalString, length, min, max, parameterObject

Description: Using the user-supplied logical string, this Generator produces a Xenakis sieve segment
within the z range of zero to one less than the supplied length. Values produced with the fill value
Generator ParameterObject are funneled through this sieve: given a fill value, the nearest sieve value
is selected and returned. Note: the fill value ParameterObject min and max should be set to 0 and 1.

Arguments: (1) name, (2) logicalString, (3) length, (4) min, (5) max, (6) parameterObject {fill value
generator}

Sample Arguments: sf, 3|4, 24, 0, 1, (ru,0,1)

 ParameterObject Reference and Examples

 173

Example C-123. sieveFunnel Demonstration 1

sieveFunnel, 3@0|4@0, 24, (constant, 0), (constant, 1), (randomUniform,
(constant, 0), (constant, 1))

Example C-124. sieveFunnel Demonstration 2

sieveFunnel, 5@0|13@0, 14, (waveSine, event, (constant, 60), 0, (constant, 0),
(constant, 0.25)), (waveSine, event, (constant, 60), 0, (constant, 0.75),
(constant, 1)), (randomUniform, (constant, 0), (constant, 1))

Example C-125. sieveFunnel Demonstration 3

sieveFunnel, 13@5|13@7|13@11, 20, (accumulator, 0, (waveSine, event,
(constant, 30), 1, (constant, -0.75), (constant, 1.75))), (breakPointPower,
event, loop, ((0,100),(160,20)), 2), (randomBeta, 0.4, 0.3, (constant, 0),
(constant, 1))

C.1.62. sieveList (sl)

sieveList, logicalString, zMin, zMax, format, selectionString

Description: Produces a Xenakis sieve as a raw, variable format sieve segment list. A z is defined by
the range of integers from zMin to zMax. Depending on format type, the resulting segment can be

 ParameterObject Reference and Examples

 174

given as an integer, width, unit, or binary segment. Values are chosen from this list using the selector
specified by the selectionString argument.

Arguments: (1) name, (2) logicalString, (3) zMin, (4) zMax, (5) format {'integer', 'width', 'unit',
'binary'}, (6) selectionString {'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic',
'orderedOscillate'}

Sample Arguments: sl, 3|4, -12, 12, int, oc

Example C-126. sieveList Demonstration 1

sieveList, 3@0|4@0, -12, 12, integer, orderedCyclic

C.1.63. sampleSelect (ss)

sampleSelect, fileNameList, selectionString

Description: Given a list of file names (fileNameList), this Generator provides a complete file path
to the file found within either the libATH/ssdir or the user-selected ssdir. Values are chosen from
this list using the selector specified by the selectionString argument.

Arguments: (1) name, (2) fileNameList, (3) selectionString {'randomChoice', 'randomWalk',
'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: ss, (), rc

C.1.64. typeFormat (tf)

typeFormat, typeFormatString, parameterObject

Description: Convert the output of any ParameterObject into a different type or display format.

Arguments: (1) name, (2) typeFormatString {'string', 'stringQuote'}, (3) parameterObject
{generator}

Sample Arguments: tf, sq, (bg,rc,(1,3,4,7,-11))

 ParameterObject Reference and Examples

 175

C.1.65. valuePrime (vp)

valuePrime, start, length, min, max, selectionString

Description: Produces a segment of prime (pseudoprime) integers defined by a positive or negative
start value and a length. The resulting list of values is normalized within the unit interval. Values are
chosen from this list using the selector specified by the selectionString argument. After selection,
this value is scaled within the range designated by min and max; min and max may be specified with
ParameterObjects.

Arguments: (1) name, (2) start, (3) length, (4) min, (5) max, (6) selectionString {'randomChoice',
'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: vp, 2, 50, 0, 1, oo

Example C-127. valuePrime Demonstration 1

valuePrime, 2, 50, (constant, 0), (constant, 1), orderedOscillate

Example C-128. valuePrime Demonstration 2

valuePrime, 100, 20, (breakPointHalfCosine, event, loop, ((0,0.5),(120,1))),
(constant, 1), randomPermutate

C.1.66. valueSieve (vs)

valueSieve, logicalString, length, min, max, selectionString

Description: Using the user-supplied logical string, this Generator produces a Xenakis sieve segment
within the z range of zero to one less than the supplied length. The resulting list of values is
normalized within the unit interval. Values are chosen from this list using the selector specified by

 ParameterObject Reference and Examples

 176

the selectionString argument. After selection, this value is scaled within the range designated by min
and max; min and max may be specified with ParameterObjects.

Arguments: (1) name, (2) logicalString, (3) length, (4) min, (5) max, (6) selectionString
{'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: vs, 3&19|4&13@11, 360, 0, 1, oo

Example C-129. valueSieve Demonstration 1

valueSieve, 3@0&19@0|4@0&13@11, 360, (constant, 0), (constant, 1),
orderedOscillate

Example C-130. valueSieve Demonstration 2

valueSieve, 3@0&19@0|4@0&13@11|5@2&15@2, 120, (constant, 0), (constant, 1),
randomWalk

Example C-131. valueSieve Demonstration 3

valueSieve, 3@0&19@0|4@0&13@11, 240, (breakPointPower, event, single,
((0,0),(80,48),(120,30)), -1.25), (breakPointPower, event, single,
((0,100),(80,52),(120,100)), 1.25), orderedCyclic

 ParameterObject Reference and Examples

 177

Example C-132. valueSieve Demonstration 4

valueSieve, 3@0&19@0|4@0&13@11, 120, (breakPointPower, event, single,
((0,0),(80,48),(120,30)), -1.25), (breakPointPower, event, single,
((0,100),(80,52),(120,100)), 1.25), randomPermutate

C.1.67. waveCosine (wc)

waveCosine, stepString, parameterObject, phase, min, max

Description: Provides cosinusoid oscillation between 0 and 1 at a rate given in either time or events
per period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is
specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) min, (6) max

Sample Arguments: wc, e, 30, 0, 0, 1

Example C-133. waveCosine Demonstration 1

waveCosine, event, (constant, 30), 0, (constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 178

Example C-134. waveCosine Demonstration 2

waveCosine, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0,
(constant, 0), (constant, 1)

Example C-135. waveCosine Demonstration 3

waveCosine, event, (constant, 40), 0, (wavePulse, event, (constant, 20), 0,
(constant, 1), (constant, 0.5)), (accumulator, 0, (constant, 0.01))

C.1.68. wavePulse (wp)

wavePulse, stepString, parameterObject, phase, min, max

Description: Provides a pulse (square) wave between 0 and 1 at a rate given in either time or events
per period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is
specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) min, (6) max

Sample Arguments: wp, e, 30, 0, 0, 1

 ParameterObject Reference and Examples

 179

Example C-136. wavePulse Demonstration 1

wavePulse, event, (constant, 30), 0, (constant, 0), (constant, 1)

Example C-137. wavePulse Demonstration 2

wavePulse, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0,
(constant, 0), (constant, 1)

Example C-138. wavePulse Demonstration 3

wavePulse, event, (constant, 10), 0, (accumulator, 0, (waveSine, event,
(constant, 30), 0.75, (constant, -0.01), (constant, 0.03))), (constant, 0.5)

C.1.69. wavePowerDown (wpd)

wavePowerDown, stepString, parameterObject, phase, exponent, min, max

Description: Provides a power down wave between 0 and 1 at a rate given in either time or events
per period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is

 ParameterObject Reference and Examples

 180

specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) exponent, (6) min, (7) max

Sample Arguments: wpd, e, 30, 0, 2, 0, 1

Example C-139. wavePowerDown Demonstration 1

wavePowerDown, event, (constant, 30), 0, 2, (constant, 0), (constant, 1)

Example C-140. wavePowerDown Demonstration 2

wavePowerDown, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0,
2, (constant, 0), (constant, 1)

Example C-141. wavePowerDown Demonstration 3

wavePowerDown, event, (constant, 40), 0, -1.5, (wavePulse, event, (constant,
30), 0, (constant, 0), (constant, 0.2)), (wavePulse, event, (constant, 20),
0.25, (constant, 1), (constant, 0.8))

 ParameterObject Reference and Examples

 181

C.1.70. wavePowerUp (wpu)

wavePowerUp, stepString, parameterObject, phase, exponent, min, max

Description: Provides a power up wave between 0 and 1 at a rate given in either time or events per
period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is
specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) exponent, (6) min, (7) max

Sample Arguments: wpu, e, 30, 0, 2, 0, 1

Example C-142. wavePowerUp Demonstration 1

wavePowerUp, event, (constant, 30), 0, 2, (constant, 0), (constant, 1)

Example C-143. wavePowerUp Demonstration 2

wavePowerUp, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0, 2,
(constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 182

Example C-144. wavePowerUp Demonstration 3

wavePowerUp, event, (constant, 40), 0, 2, (randomUniform, (constant, 0),
(accumulator, 0, (constant, 0.005))), (constant, 1)

C.1.71. waveSine (ws)

waveSine, stepString, parameterObject, phase, min, max

Description: Provides sinusoid oscillation between 0 and 1 at a rate given in either time or events per
period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is
specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) min, (6) max

Sample Arguments: ws, e, 30, 0, 0, 1

Example C-145. waveSine Demonstration 1

waveSine, event, (constant, 30), 0, (constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 183

Example C-146. waveSine Demonstration 2

waveSine, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0,
(constant, 0), (constant, 1)

Example C-147. waveSine Demonstration 3

waveSine, event, (constant, 20), 0, (constant, 0), (waveSine, event,
(constant, 60), 0.25, (constant, 0.25), (constant, 1))

Example C-148. waveSine Demonstration 4

waveSine, event, (basketGen, orderedOscillate, (19,19,20,20,20)), 0,
(constant, 0), (constant, 1)

C.1.72. waveSawDown (wsd)

waveSawDown, stepString, parameterObject, phase, min, max

Description: Provides a saw-down wave between 0 and 1 at a rate given in either time or events per
period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is

 ParameterObject Reference and Examples

 184

specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) min, (6) max

Sample Arguments: wsd, e, 30, 0, 0, 1

Example C-149. waveSawDown Demonstration 1

waveSawDown, event, (constant, 30), 0, (constant, 0), (constant, 1)

Example C-150. waveSawDown Demonstration 2

waveSawDown, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0,
(constant, 0), (constant, 1)

Example C-151. waveSawDown Demonstration 3

waveSawDown, event, (constant, 20), 0, (wavePowerUp, event, (constant, 120),
0, 1.5, (constant, 0.5), (constant, 1)), (wavePowerDown, event, (constant,
40), 0.25, 1.5, (constant, 0.5), (constant, 0))

 ParameterObject Reference and Examples

 185

C.1.73. waveSawUp (wsu)

waveSawUp, stepString, parameterObject, phase, min, max

Description: Provides a saw-up wave between 0 and 1 at a rate given in either time or events per
period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is
specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) min, (6) max

Sample Arguments: wsu, e, 30, 0, 0, 1

Example C-152. waveSawUp Demonstration 1

waveSawUp, event, (constant, 30), 0, (constant, 0), (constant, 1)

Example C-153. waveSawUp Demonstration 2

waveSawUp, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0,
(constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 186

Example C-154. waveSawUp Demonstration 3

waveSawUp, event, (constant, 20), 0, (wavePowerDown, event, (constant, 40), 0,
1.5, (constant, 1), (constant, 0.5)), (constant, 0)

C.1.74. waveTriangle (wt)

waveTriangle, stepString, parameterObject, phase, min, max

Description: Provides a triangle wave between 0 and 1 at a rate given in either time or events per
period. This value is scaled within the range designated by min and max; min and max may be
specified with ParameterObjects. Depending on the stepString argument, the period rate (frequency)
may be specified in spc (seconds per cycle) or eps (events per cycle). The phase argument is
specified as a value between 0 and 1. Note: conventional cycles per second (cps or Hz) are not used
for frequency.

Arguments: (1) name, (2) stepString {'event', 'time'}, (3) parameterObject {secPerCycle}, (4) phase,
(5) min, (6) max

Sample Arguments: wt, e, 30, 0, 0, 1

Example C-155. waveTriangle Demonstration 1

waveTriangle, event, (constant, 30), 0, (constant, 0), (constant, 1)

 ParameterObject Reference and Examples

 187

Example C-156. waveTriangle Demonstration 2

waveTriangle, event, (breakPointLinear, event, loop, ((0,30),(120,15))), 0,
(constant, 0), (constant, 1)

Example C-157. waveTriangle Demonstration 3

waveTriangle, event, (constant, 30), 0, (randomUniform, (constant, 0),
(constant, 0.3)), (randomUniform, (constant, 0.7), (constant, 1))

C.2. Rhythm ParameterObjects

C.2.1. binaryAccent (ba)

binaryAccent, pulseList

Description: Deploys two Pulses based on event pitch selection. Every instance of the first pitch in
the current set of a Texture's Path is assigned the second Pulse; all other pitches are assigned the
first Pulse. Amplitude values of events that have been assigned the second pulse are increased by a
scaling function.

Arguments: (1) name, (2) pulseList {a list of Pulse notations}

Sample Arguments: ba, ((3,1,1),(3,2,1))

C.2.2. convertSecond (cs)

convertSecond, parameterObject

 ParameterObject Reference and Examples

 188

Description: Allows the use of a Generator ParameterObject to create rhythm durations. Values
from this ParameterObject are interpreted as equal Pulse duration and sustain values in seconds.
Accent values are fixed at 1. Note: when using this Rhythm Generator, tempo information (bpm)
has no effect on event timing.

Arguments: (1) name, (2) parameterObject {duration values in seconds}

Sample Arguments: cs, (ru,0.25,2.5)

Example C-158. convertSecond Demonstration 1

convertSecond, (randomUniform, (constant, 0.25), (constant, 2.5))

C.2.3. convertSecondTriple (cst)

convertSecondTriple, parameterObject, parameterObject, parameterObject

Description: Allows the use of three Generator ParameterObjects to directly specify duration,
sustain, and accent values. Values for duration and sustain are interpreted as values in seconds.
Accent values must be between 0 and 1, where 0 is a measured silence and 1 is a fully sounding
event. Note: when using this Rhythm Generator, tempo information (bpm) has no effect on event
timing.

Arguments: (1) name, (2) parameterObject {duration values in seconds}, (3) parameterObject
{sustain values in seconds}, (4) parameterObject {accent values between 0 and 1}

Sample Arguments: cst, (ws,e,30,0,0.25,2.5), (ws,e,60,0.25,0.25,2.5), (bg,rc,(0,1,1,1))

 ParameterObject Reference and Examples

 189

Example C-159. convertSecondTriple Demonstration 1

convertSecondTriple, (waveSine, event, (constant, 30), 0, (constant, 0.25),
(constant, 2.5)), (waveSine, event, (constant, 60), 0.25, (constant, 0.25),
(constant, 2.5)), (basketGen, randomChoice, (0,1,1,1))

C.2.4. gaRhythm (gr)

gaRhythm, pulseList, crossover, mutation, elitism, selectionString, populationSize

Description: Uses a genetic algorithm to create rhythmic variants of a source rhythm. Crossover rate
is a percentage, expressed within the unit interval, of genetic crossings that undergo crossover.
Mutation rate is a percentage, expressed within the unit interval, of genetic crossings that undergo
mutation. Elitism rate is a percentage, expressed within the unit interval, of the entire population
that passes into the next population unchanged. All rhythms in the final population are added to a
list. Pulses are chosen from this list using the selector specified by the control argument.

Arguments: (1) name, (2) pulseList {a list of Pulse notations}, (3) crossover, (4) mutation, (5) elitism,
(6) selectionString {'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic',
'orderedOscillate'}, (7) populationSize

Sample Arguments: gr, ((3,1,1),(3,1,1),(6,1,1),(6,3,1),(3,1,0)), 0.7, 0.06, 0.01, oc, 20

 ParameterObject Reference and Examples

 190

Example C-160. gaRhythm Demonstration 1

gaRhythm, ((3,1,+),(3,1,+),(6,1,+),(6,3,+),(3,1,o)), 0.7, 0.06, 0.01,
orderedCyclic, 20

C.2.5. iterateRhythmGroup (irg)

iterateRhythmGroup, parameterObject, parameterObject

Description: Allows the output of a source Rhythm ParameterObject to be grouped (a value is held
and repeated a certain number of times), to be skipped (a number of values are generated and
discarded), or to be bypassed. A numeric value from a control ParameterObject is used to determine
the source ParameterObject behavior. A positive value (rounded to the nearest integer) will cause
the value provided by the source ParameterObject to be repeated that many times. After output of
these values, a new control value is generated. A negative value (rounded to the nearest integer) will
cause that many number of values to be generated and discarded from the source ParameterObject,
and force the selection of a new control value. A value of 0 is treated as a bypass, and forces the
selection of a new control value. Note: if the control ParameterObject fails to produce positive
values after many attempts, a value will be automatically generated from the selected
ParameterObject.

Arguments: (1) name, (2) parameterObject {source Rhythm Generator}, (3) parameterObject
{group or skip control Generator}

Sample Arguments: irg, (l,((4,3,1),(4,3,1),(4,2,0),(8,1,1),(4,2,1),(4,2,1)),oc),
(bg,rc,(-3,1,-1,5))

 ParameterObject Reference and Examples

 191

Example C-161. iterateRhythmGroup Demonstration 1

iterateRhythmGroup, (loop, ((4,3,+),(4,3,+),(4,2,o),(8,1,+),(4,2,+),(4,2,+)),
orderedCyclic), (basketGen, randomChoice, (-3,1,-1,5))

C.2.6. iterateRhythmHold (irh)

iterateRhythmHold, parameterObject, parameterObject, parameterObject, selectionString

Description: Allows a variable number of outputs from a source Rhythm ParameterObject, collected
and stored in a list, to be held and selected. Values are chosen from this list using the selector
specified by the selectionString argument. A numeric value from a size ParameterObject is used to
determine how many values are drawn from the source ParameterObject. A numeric value from a
refresh count ParameterObject is used to determine how many events must pass before a new size
value is drawn and the source ParameterObject is used to refill the stored list. A refresh value of
zero, once encountered, will prohibit any further changes to the stored list. Note: if the size
ParameterObject fails to produce a non-zero value for the first event, an alternative count value will
be assigned.

Arguments: (1) name, (2) parameterObject {source Rhythm Generator}, (3) parameterObject {size
Generator}, (4) parameterObject {refresh count Generator}, (5) selectionString {'randomChoice',
'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: irh, (pt,(bg,rc,(4,2)),(bg,oc,(5,4,3,2,1)),(c,1),(ru,0.75,1.25)),
(bg,rc,(2,3,4)), (bg,oc,(4,5,6)), oc

 ParameterObject Reference and Examples

 192

Example C-162. iterateRhythmHold Demonstration 1

iterateRhythmHold, (pulseTriple, (basketGen, randomChoice, (4,2)), (basketGen,
orderedCyclic, (5,4,3,2,1)), (constant, 1), (randomUniform, (constant, 0.75),
(constant, 1.25))), (basketGen, randomChoice, (2,3,4)), (basketGen,
orderedCyclic, (4,5,6)), orderedCyclic

C.2.7. iterateRhythmWindow (irw)

iterateRhythmWindow, parameterObjectList, parameterObject, selectionString

Description: Allows a Rhythm ParameterObject, selected from a list of Rhythm ParameterObjects,
to generate values, to skip values (a number of values are generated and discarded), or to bypass
value generation. A numeric value from a control ParameterObject is used to determine the selected
ParameterObject behavior. A positive value (rounded to the nearest integer) will cause the selected
ParameterObject to produce that many new values. After output of these values, a new
ParameterObject is selected. A negative value (rounded to the nearest integer) will cause the selected
ParameterObject to generate and discard that many values, and force the selection of a new
ParameterObject. A value equal to 0 is treated as a bypass, and forces the selection of a new
ParameterObject. ParameterObject selection is determined with a string argument for a selection
method. Note: if the control ParameterObject fails to produce positive values after many attempts, a
value will be automatically generated from the selected ParameterObject.

Arguments: (1) name, (2) parameterObjectList {a list of Rhythm Generators}, (3) parameterObject
{generate or skip control Generator}, (4) selectionString {'randomChoice', 'randomWalk',
'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: irw,
((l,((4,3,1),(4,3,1),(4,2,0),(8,1,1),(4,2,1),(4,2,1)),oc),(cs,(ru,1.5,4))),
(bg,rc,(-3,6,-1,15)), oc

 ParameterObject Reference and Examples

 193

Example C-163. iterateRhythmWindow Demonstration 1

iterateRhythmWindow, ((loop,
((4,3,+),(4,3,+),(4,2,o),(8,1,+),(4,2,+),(4,2,+)), orderedCyclic),
(convertSecond, (randomUniform, (constant, 1.5), (constant, 4)))), (basketGen,
randomChoice, (-3,6,-1,15)), orderedCyclic

C.2.8. loop (l)

loop, pulseList, selectionString

Description: Deploys a fixed list of rhythms. Pulses are chosen from this list using the selector
specified by the selectionString argument.

Arguments: (1) name, (2) pulseList {a list of Pulse notations}, (3) selectionString {'randomChoice',
'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: l, ((3,1,1),(3,1,1),(8,1,1),(8,1,1),(8,3,1),(3,2,0)), oc

 ParameterObject Reference and Examples

 194

Example C-164. loop Demonstration 1

loop, ((3,1,+),(3,1,+),(8,1,+),(8,1,+),(8,3,+),(3,2,o)), orderedCyclic

C.2.9. markovPulse (mp)

markovPulse, transitionString, parameterObject

Description: Produces Pulse sequences by means of a Markov transition string specification and a
dynamic transition order generator. The Markov transition string must define symbols that specify
valid Pulses. Markov transition order is specified by a ParameterObject that produces values
between 0 and the maximum order available in the Markov transition string. If generated-orders are
greater than those available, the largest available transition order will be used. Floating-point order
values are treated as probabilistic weightings: for example, a transition of 1.5 offers equal probability
of first or second order selection.

Arguments: (1) name, (2) transitionString, (3) parameterObject {order value}

Sample Arguments: mp, a{3,1,1}b{2,1,1}c{3,2,0}:{a=3|b=4|c=1}, (c,0)

 ParameterObject Reference and Examples

 195

Example C-165. markovPulse Demonstration 1

markovPulse, a{3,1,1}b{2,1,1}c{3,2,0}:{a=3|b=4|c=1}, (constant, 0)

C.2.10. markovRhythmAnalysis (mra)

markovRhythmAnalysis, parameterObject, pulseCount, maxAnalysisOrder, parameterObject

Description: Produces Pulse sequences by means of a Markov analysis of a rhythm provided by a
source Rhythm Generator ParameterObject; the analysis of these values is used with a dynamic
transition order Generator to produce new values. The number of values drawn from the source
Rhythm Generator is specified with the pulseCount argument. The maximum order of analysis is
specified with the maxAnalysisOrder argument. Markov transition order is specified by a
ParameterObject that produces values between 0 and the maximum order available in the Markov
transition string. If generated-orders are greater than those available, the largest available transition
order will be used. Floating-point order values are treated as probabilistic weightings: for example, a
transition of 1.5 offers equal probability of first or second order selection.

Arguments: (1) name, (2) parameterObject {source Rhythm Generator}, (3) pulseCount, (4)
maxAnalysisOrder, (5) parameterObject {output order value}

Sample Arguments: mra, (l,((4,3,1),(4,3,1),(4,2,0),(8,1,1),(4,2,1),(4,2,1)),oc), 12, 2,
(cg,u,0,2,0.25)

 ParameterObject Reference and Examples

 196

Example C-166. markovRhythmAnalysis Demonstration 1

markovRhythmAnalysis, (loop,
((4,3,+),(4,3,+),(4,2,o),(8,1,+),(4,2,+),(4,2,+)), orderedCyclic), 12, 2,
(cyclicGen, up, 0, 2, 0.25)

C.2.11. pulseSieve (ps)

pulseSieve, logicalString, sieveLength, pulse, selectionString, articulationString

Description: Using the user-supplied logical string, this Generator produces a Xenakis sieve segment
within the z range of zero to one less than the supplied length. This sieve, as a binary or width
segment, is interpreted as a pulse list. The length of each pulse and the presence of rests are
determined by the user-provided Pulse object and the articulationString argument. An
articulationString of 'attack' creates durations equal to the provided Pulse for every non-zero binary
sieve segment value; an articulationString of 'sustain' creates durations equal to the Pulse times the
sieve segment width, or the duration of all following rests until the next Pulse. Values are chosen
from this list using the selector specified by the selectionString argument.

Arguments: (1) name, (2) logicalString, (3) sieveLength, (4) pulse {a single Pulse notation}, (5)
selectionString {'randomChoice', 'randomWalk', 'randomPermutate', 'orderedCyclic',
'orderedOscillate'}, (6) articulationString {'attack', 'sustain'}

Sample Arguments: ps, 3|4|5@2, 60, (3,1,1), oc, a

 ParameterObject Reference and Examples

 197

Example C-167. pulseSieve Demonstration 1

pulseSieve, 3@0|4@0|5@2, 60, (3,1,+), orderedCyclic, attack

Example C-168. pulseSieve Demonstration 2

pulseSieve, 3@0|4@0|5@2, 60, (4,1,+), randomChoice, sustain

 ParameterObject Reference and Examples

 198

C.2.12. pulseTriple (pt)

pulseTriple, parameterObject, parameterObject, parameterObject, parameterObject

Description: Produces Pulse sequences with four Generator ParameterObjects that directly specify
Pulse triple values and a sustain scalar. The Generators specify Pulse divisor, multiplier, accent, and
sustain scalar. Floating-point divisor and multiplier values are treated as probabilistic weightings.
Note: divisor and multiplier values of 0 are not permitted and are replaced by 1; the absolute value is
taken of all values.

Arguments: (1) name, (2) parameterObject {pulse divisor}, (3) parameterObject {pulse multiplier},
(4) parameterObject {accent value between 0 and 1}, (5) parameterObject {sustain scalar greater
than 0}

Sample Arguments: pt, (bg,rc,(6,5,4,3)), (bg,rc,(1,2,3)), (bg,rc,(1,1,1,0)), (ru,0.5,1.5)

Example C-169. pulseTriple Demonstration 1

pulseTriple, (basketGen, randomChoice, (6,5,4,3)), (basketGen, randomChoice,
(1,2,3)), (basketGen, randomChoice, (1,1,1,0)), (randomUniform, (constant,
0.5), (constant, 1.5))

 ParameterObject Reference and Examples

 199

Example C-170. pulseTriple Demonstration 2

pulseTriple, (constant, 4), (caList,
f{s}k{2}r{1}i{center}x{81}y{120}w{6}c{-2}s{0}, (constant, 109), (constant,
0.01), sumRow, orderedCyclic), (caValue,
f{s}k{2}r{1}i{center}x{81}y{120}w{3}c{8}s{0}, (constant, 109), (constant,
0.003), sumRow, (constant, 0), (constant, 1), orderedCyclic), (constant, 1)

C.2.13. rhythmSieve (rs)

rhythmSieve, logicalString, sieveLength, selectionString, parameterObject

Description: Using the user-supplied logical string, this Generator produces a Xenakis sieve segment
within the z range of zero to one less than the supplied length. The resulting binary sieve segment is
used to filter any non-rest Pulse sequence generated by a Rhythm ParameterObject. The sieve is
interpreted as a mask upon the ordered positions of the generated list of Pulses, where a sieve value
retains the Pulse at the corresponding position, and all other Pulses are converted to rests. Note: any
rests in the generated Pulse sequence will be converted to non-rests before sieve filtering.

Arguments: (1) name, (2) logicalString, (3) sieveLength, (4) selectionString {'randomChoice',
'randomWalk', 'randomPermutate', 'orderedCyclic', 'orderedOscillate'}, (5) parameterObject
{Rhythm Generator}

Sample Arguments: rs, 3|4|5, 60, rw, (l,((3,1,1),(3,1,1),(3,5,1)))

 ParameterObject Reference and Examples

 200

Example C-171. rhythmSieve Demonstration 1

rhythmSieve, 3@0|4@0|5@0, 60, randomWalk, (loop, ((3,1,+),(3,1,+),(3,5,+)),
orderedCyclic)

C.3. Filter ParameterObjects

C.3.1. bypass (b)

bypass

Description: Each input value is returned unaltered.

Arguments: (1) name

Sample Arguments: b

 ParameterObject Reference and Examples

 201

Example C-172. bypass Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
bypass

C.3.2. filterAdd (fa)

filterAdd, parameterObject

Description: Each input value is added to a value produced by a user-supplied ParameterObject.

Arguments: (1) name, (2) parameterObject {operator value generator}

Sample Arguments: fa, (ws,e,30,0,0,1)

Example C-173. filterAdd Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterAdd, (waveSine, event, (constant, 30), 0, (constant, 0), (constant, 1))

 ParameterObject Reference and Examples

 202

C.3.3. filterDivide (fd)

filterDivide, parameterObject

Description: Each input value is divided by a value produced by a user-supplied ParameterObject.
Division by zero, if encountered, returns the value of the input value unaltered.

Arguments: (1) name, (2) parameterObject {operator value generator}

Sample Arguments: fd, (ws,e,30,0,0,1)

Example C-174. filterDivide Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterDivide, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1))

C.3.4. filterDivideAnchor (fda)

filterDivideAnchor, anchorString, parameterObject

Description: All input values are first shifted so that the position specified by anchor is zero; then
each value is divided by the value produced by the parameterObject. All values are then re-shifted so
that zero returns to its former position. Division by zero, if encountered, returns the value of the
input value unaltered.

Arguments: (1) name, (2) anchorString {'lower', 'upper', 'average', 'median'}, (3) parameterObject
{operator value generator}

Sample Arguments: fda, lower, (wc,e,30,0,0,1)

 ParameterObject Reference and Examples

 203

Example C-175. filterDivideAnchor Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterDivideAnchor, lower, (waveCosine, event, (constant, 30), 0, (constant,
0), (constant, 1))

C.3.5. filterFunnelBinary (ffb)

filterFunnelBinary, thresholdMatchString, parameterObject, parameterObject, parameterObject

Description: A dynamic, two-part variable funnel filter. Given values produced by two boundary
parameterObjects and a threshold ParameterObject, the output of a Generator ParameterObject
value is shifted to one of the boundaries (or the threshold) depending on the relationship of the
generated value to the threshold. If the generated value is equal to the threshold, the value may be
shifted to the upper or lower value, or retain the threshold value.

Arguments: (1) name, (2) thresholdMatchString {'upper', 'lower', 'match'}, (3) parameterObject
{threshold}, (4) parameterObject {first boundary}, (5) parameterObject {second boundary}

Sample Arguments: ffb, u, (bpl,e,s,((0,0),(120,1))), (ws,e,60,0,0.5,0), (wc,e,90,0,0.5,1)

 ParameterObject Reference and Examples

 204

Example C-176. filterFunnelBinary Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterFunnelBinary, upper, (breakPointLinear, event, single, ((0,0),(120,1))),
(waveSine, event, (constant, 60), 0, (constant, 0.5), (constant, 0)),
(waveCosine, event, (constant, 90), 0, (constant, 0.5), (constant, 1))

Example C-177. filterFunnelBinary Demonstration 2

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterFunnelBinary, match, (constant, 0.2), (breakPointLinear, event, loop,
((0,0),(60,0.5))), (breakPointLinear, event, loop, ((0,1),(60,0.5)))

C.3.6. filterMultiply (fm)

filterMultiply, parameterObject

Description: Each input value is multiplied by a value produced by a user-supplied ParameterObject.

Arguments: (1) name, (2) parameterObject {operator value generator}

 ParameterObject Reference and Examples

 205

Sample Arguments: fm, (ws,e,30,0,0,1)

Example C-178. filterMultiply Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterMultiply, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1))

C.3.7. filterMultiplyAnchor (fma)

filterMultiplyAnchor, anchorString, parameterObject

Description: All input values are first shifted so that the position specified by anchor is zero; then
each value is multiplied by the value produced by the parameterObject. All values are then re-shifted
so that zero returns to its former position.

Arguments: (1) name, (2) anchorString {'lower', 'upper', 'average', 'median'}, (3) parameterObject
{operator value generator}

Sample Arguments: fma, lower, (wc,e,30,0,0,1)

 ParameterObject Reference and Examples

 206

Example C-179. filterMultiplyAnchor Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterMultiplyAnchor, lower, (waveCosine, event, (constant, 30), 0, (constant,
0), (constant, 1))

C.3.8. filterPower (fp)

filterPower, parameterObject

Description: Each input value is taken to the power of the value produced by a user-supplied
ParameterObject.

Arguments: (1) name, (2) parameterObject {operator value generator}

Sample Arguments: fp, (ws,e,30,0,0,1)

Example C-180. filterPower Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))

 ParameterObject Reference and Examples

 207

filterPower, (waveSine, event, (constant, 30), 0, (constant, 0), (constant,
1))

C.3.9. filterQuantize (fq)

filterQuantize, parameterObject, parameterObject, stepCount, parameterObject

Description: Dynamic grid size and grid position quantization filter. For each value provided by the
source ParameterObject, a grid is created. This grid is made by taking the number of steps specified
by the stepCount integer from the step width Generator ParameterObject. The absolute value of
these widths are used to create a grid above and below the reference value, with grid steps taken in
order. The value provided by the source ParameterObject is found within this grid, and pulled to the
nearest grid line. The degree of pull can be a dynamically allocated with a unit-interval quantize pull
ParameterObject. A value of 1 forces all values to snap to the grid; a value of .5 will cause a
weighted attraction.

Arguments: (1) name, (2) parameterObject {grid reference value Generator}, (3) parameterObject
{step width Generator}, (4) stepCount, (5) parameterObject {unit interval measure of quantize pull}

Sample Arguments: fq, (c,0), (c,0.25), 1, (c,1)

Example C-181. filterQuantize Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterQuantize, (constant, 0), (constant, 0.25), 1, (constant, 1)

 ParameterObject Reference and Examples

 208

Example C-182. filterQuantize Demonstration 2

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
filterQuantize, (cyclicGen, up, 0, 1, 0.003), (basketGen, orderedCyclic,
(0.4,0.6)), 2, (breakPointPower, event, loop, ((0,1),(59,0),(119,1)), -3)

C.3.10. maskFilter (mf)

maskFilter, boundaryString, parameterObject, parameterObject

Description: Each input value is fit between values provided by two boundary Generator
ParameterObjects. The fit is determined by the boundaryString: limit will fix the value at the nearest
boundary; wrap will wrap the value through the range defined by the boundaries; reflect will bounce
values in the opposite direction through the range defined by the boundaries.

Arguments: (1) name, (2) boundaryString {'limit', 'wrap', 'reflect'}, (3) parameterObject {first
boundary}, (4) parameterObject {second boundary}

Sample Arguments: mf, l, (ws,e,60,0,0.5,0), (wc,e,90,0,0.5,1)

Example C-183. maskFilter Demonstration 1

 ParameterObject Reference and Examples

 209

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
maskFilter, limit, (waveSine, event, (constant, 60), 0, (constant, 0.5),
(constant, 0)), (waveCosine, event, (constant, 90), 0, (constant, 0.5),
(constant, 1))

C.3.11. maskScaleFilter (msf)

maskScaleFilter, min, max, selectionString

Description: Each input value is collected into a list. The resulting list of values is normalized within
the unit interval. Values are chosen from this list using the selector specified by the selectionString
argument. After selection, this value is scaled within the range designated by min and max; min and
max may be specified with ParameterObjects.

Arguments: (1) name, (2) min, (3) max, (4) selectionString {'randomChoice', 'randomWalk',
'randomPermutate', 'orderedCyclic', 'orderedOscillate'}

Sample Arguments: msf, (ws,e,60,0,0.5,0), (wc,e,90,0,0.5,1), rc

Example C-184. maskScaleFilter Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
maskScaleFilter, (waveSine, event, (constant, 60), 0, (constant, 0.5),
(constant, 0)), (waveCosine, event, (constant, 90), 0, (constant, 0.5),
(constant, 1)), randomChoice

C.3.12. orderBackward (ob)

orderBackward

Description: All values input are returned in reversed order.

Arguments: (1) name

 ParameterObject Reference and Examples

 210

Sample Arguments: ob

Example C-185. orderBackward Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
orderBackward

C.3.13. orderRotate (or)

orderRotate, rotationSize

Description: Rotates all input values as many steps as specified; if the number of steps is greater than
the number of input values, the modulus of the input length is used.

Arguments: (1) name, (2) rotationSize

Sample Arguments: or, 40

Example C-186. orderRotate Demonstration 1

 ParameterObject Reference and Examples

 211

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
orderRotate, 40

C.3.14. pipeLine (pl)

pipeLine, filterParameterObjectList

Description: Provide a list of Filter ParameterObjects; input values are passed through each filter in
the user-supplied order from left to right.

Arguments: (1) name, (2) filterParameterObjectList {a list of sequential Filter ParameterObjects}

Sample Arguments: pl, ((or,40),(ob))

Example C-187. pipeLine Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
pipeLine, ((orderRotate, 40), (orderBackward))

C.3.15. replace (r)

replace, parameterObject

Description: Replace input values with values produced by a Generator ParameterObject.

Arguments: (1) name, (2) parameterObject {generator to replace original values}

Sample Arguments: r, (ru,0,1)

 ParameterObject Reference and Examples

 212

Example C-188. replace Demonstration 1

randomUniform, (breakPointLinear, event, loop, ((0,0.5),(120,0))),
(breakPointLinear, event, loop, ((0,0.5),(120,1)))
replace, (randomUniform, (constant, 0), (constant, 1))

C.4. TextureStatic ParameterObjects

C.4.1. eventDensityPartition (edp)

eventDensityPartition, level

Description: Define how event count is distributed within a Texture, either proportional to path
duration or equal proportion per path set.

Arguments: (1) name, (2) level {'duration', 'set'}

Sample Arguments: edp, duration

C.4.2. interpolationMethodControl (imc)

interpolationMethodControl, method

Description: Selects the type of interpolation used for all parameters.

Arguments: (1) name, (2) method {'linear', 'halfCosine', 'power'}

Sample Arguments: imc, linear

C.4.3. levelEventCount (lec)

levelEventCount, level

 ParameterObject Reference and Examples

 213

Description: Define at what level event count values are generated: once per Texture for the total
event count (with a distribution per segment proportional to segment duration), or once per
segment for each segment event count.

Arguments: (1) name, (2) level {'segment', 'texture'}

Sample Arguments: lec, segment

C.4.4. levelEventPartition (lep)

levelEventPartition, level

Description: Toggle between selection of event start time per set of the Texture Path, or per Path.
This control will determine if the event generator is mapped within the Texture time range, or
within the set time range. When set to path, this control will over-ride event density partitioning.

Arguments: (1) name, (2) level {'set', 'path'}

Sample Arguments: lep, path

C.4.5. levelFrameDuration (lfd)

levelFrameDuration, level

Description: Toggle between selection of frame duration values per frame or per event.

Arguments: (1) name, (2) level {'event', 'frame'}

Sample Arguments: lfd, event

C.4.6. levelFieldMonophonic (lfm)

levelFieldMonophonic, level

Description: Toggle between selection of local field (transposition) values per set of the Texture
Path, or per event.

Arguments: (1) name, (2) level {'set', 'event'}

Sample Arguments: lfm, event

C.4.7. levelFieldPolyphonic (lfp)

levelFieldPolyphonic, level

 ParameterObject Reference and Examples

 214

Description: Toggle between selection of local field (transposition) values per set of the Texture
Path, per event, or per polyphonic voice event.

Arguments: (1) name, (2) level {'set', 'event', 'voice'}

Sample Arguments: lfp, event

C.4.8. levelOctaveMonophonic (lom)

levelOctaveMonophonic, level

Description: Toggle between selection of local octave (transposition) values per set of the Texture
Path, or per event.

Arguments: (1) name, (2) level {'set', 'event'}

Sample Arguments: lom, event

C.4.9. levelOctavePolyphonic (lop)

levelOctavePolyphonic, level

Description: Toggle between selection of local octave (transposition) values per set of the Texture
Path, per event, or per polyphonic voice event.

Arguments: (1) name, (2) level {'set', 'event', 'voice'}

Sample Arguments: lop, event

C.4.10. loopWithinSet (lws)

loopWithinSet, onOff

Description: Controls if pitches in a set are repeated by a Texture within the set's duration fraction.

Arguments: (1) name, (2) onOff {'on', 'off'}

Sample Arguments: lws, on

C.4.11. multisetSelectorControl (msc)

multisetSelectorControl, selectionString

Description: Define the selector method of Multiset selection within a Path used by a Texture.

 ParameterObject Reference and Examples

 215

Arguments: (1) name, (2) selectionString {'randomChoice', 'randomWalk', 'randomPermutate',
'orderedCyclic', 'orderedOscillate'}

Sample Arguments: msc, randomPermutate

C.4.12. maxTimeOffset (mto)

maxTimeOffset, time

Description: Used to select an offset time in seconds. Offset is applied with the absolute value of a
gaussian distribution after the Texture-generated event start time.

Arguments: (1) name, (2) time

Sample Arguments: mto, 0.03

C.4.13. ornamentLibrarySelect (ols)

ornamentLibrarySelect, libraryName

Description: Selects a library of ornaments to use with a Texture.

Arguments: (1) name, (2) libraryName {'chromaticGroupC', 'diatonicGroupA', 'diatonicGroupB',
'microGroupA', 'microGroupB', 'microGroupC', 'trillGroupA', 'off'}

Sample Arguments: ols, diatonicGroupA

C.4.14. ornamentMaxDensity (omd)

ornamentMaxDensity, percent

Description: Controls maximum percent of events that are ornamented. Density value should be
specified within the unit interval.

Arguments: (1) name, (2) percent

Sample Arguments: omd, 1

C.4.15. pathDurationFraction (pdf)

pathDurationFraction, onOff

Description: Toggle Path duration fraction; if off, Path duration fractions are not used to partition
Path deployment over the duration of the Texture. Instead, each Path set is used to create a single
event.

 ParameterObject Reference and Examples

 216

Arguments: (1) name, (2) onOff {'on', 'off'}

Sample Arguments: pdf, on

C.4.16. parameterInterpolationControl (pic)

parameterInterpolationControl, onOff

Description: Controls if all non-duration parameter values are interpolated between events.

Arguments: (1) name, (2) onOff {'on', 'off'}

Sample Arguments: pic, on

C.4.17. parallelMotionList (pml)

parallelMotionList, transpositionList, timeDelay

Description: List is a collection of transpositions created above every Texture-generated base note.
The timeDelay value determines the amount of time in seconds between each successive
transposition in the transpositionList.

Arguments: (1) name, (2) transpositionList, (3) timeDelay

Sample Arguments: pml, (), 0.0

C.4.18. pitchSelectorControl (psc)

pitchSelectorControl, selectionString

Description: Define the selector method of Path pitch selection used by a Texture.

Arguments: (1) name, (2) selectionString {'randomChoice', 'randomWalk', 'randomPermutate',
'orderedCyclic', 'orderedOscillate'}

Sample Arguments: psc, randomPermutate

C.4.19. snapEventTime (set)

snapEventTime, onOff

Description: Controls if all event start times are shifted to align with frame divisions.

Arguments: (1) name, (2) onOff {'on', 'off'}

Sample Arguments: set, on

 ParameterObject Reference and Examples

 217

C.4.20. snapSustainTime (sst)

snapSustainTime, onOff

Description: Controls if all event sustain values are scaled to the frame width.

Arguments: (1) name, (2) onOff {'on', 'off'}

Sample Arguments: sst, on

C.4.21. totalEventCount (tec)

totalEventCount, count

Description: Selects the total number of events generated within the Texture time range.

Arguments: (1) name, (2) count

Sample Arguments: tec, 20

C.4.22. totalSegmentCount (tsc)

totalSegmentCount, count

Description: Set the number of segments with which to divide the Texture's duration.

Arguments: (1) name, (2) count

Sample Arguments: tsc, 10

C.5. CloneStatic ParameterObjects

C.5.1. retrogradeMethodToggle (rmt)

retrogradeMethodToggle, name

Description: Selects type of retrograde transformation applied to Texture events.

Arguments: (1) name, (2) name {'timeInverse', 'eventInverse', 'off'}

Sample Arguments: rmt, off

C.5.2. timeReferenceSource (trs)

timeReferenceSource, name

 ParameterObject Reference and Examples

 218

Description: Selects time reference source used in calculating ParameterObjects.

Arguments: (1) name, (2) name {'cloneTime', 'textureTime'}

Sample Arguments: trs, textureTime

 219

Appendix D. Temperament and TextureModule Reference

D.1. Temperaments

D.1.1. Temperament Interleave24Even

Even steps of a 24 tone equal tempered scale

D.1.2. Temperament Interleave24Odd

Odd steps of a 24 tone equal tempered scale

D.1.3. Temperament Just

Static Just tuning

D.1.4. Temperament MeanTone

Static Mean Tone tuning

D.1.5. Temperament NoiseHeavy

Provide uniform random +/- 15 cent noise on each pitch

D.1.6. Temperament NoiseLight

Provide uniform random +/- 5 cent noise on each pitch

D.1.7. Temperament NoiseMedium

Provide uniform random +/- 10 cent noise on each pitch

D.1.8. Temperament Pythagorean

Static Pythagorean tuning

D.1.9. Temperament Split24Lower

Lower half of a 24 tone equal tempered scale

 Temperament and TextureModule Reference

 220

D.1.10. Temperament Split24Upper

Upper half of a 24 tone equal tempered scale

D.1.11. Temperament TwelveEqual

Twelve tone equal temperament

D.2. TextureModules

D.2.1. TextureModule DroneArticulate

This non-linear TextureModule treats each pitch in each set of a Path as an independent voice; each
voice is written one at time over the complete time range of each set in the Texture.

D.2.2. TextureModule DroneSustain

This TextureModule performs a simple vertical presentation of the Path, each set sustained over the
complete duration proportion of the set within the Texture. Note: rhythm and bpm values have no
effect on event durations.

D.2.3. TextureModule HarmonicAssembly

This TextureModule provides free access to Path pitch collections in an order, rate, simultaneity
size, and simultaneity composition determined by generator ParameterObjects. Path Multisets are
directly selected by index values generated by a ParameterObject; all values are probabilistically
rounded to the nearest integer and are resolved by the modulus of the Path length. The number of
simultaneities created from a selected Multiset is controlled by a generator ParameterObject; all
values are probabilistically rounded to the nearest integer. Pitches within Multisets are directly
chosen by index values generated by a ParameterObject; all values are probabilistically rounded to
the nearest integer and are resolved by the modulus of the Multiset size. The number of pitches
extracted from a Multiset is controlled by a generator ParameterObject; a size of zero takes all
pitches from the selected Multiset; sizes greater than the number of pitches are resolved to the
maximum number of pitches. Remaining event parameters are determined by their respective
ParameterObjects.

D.2.4. TextureModule HarmonicShuffle

This TextureModule provides limited access to Path pitch collections in an order, rate, simultaneity
size, and simultaneity composition determined by generator ParameterObjects. Path Multisets and
pitches within Multisets are chosen by selectors. The number of simultaneities that are created from
a Multiset, and the number of pitches in each simultaneity, are controlled by generator
ParameterObjects; all values are probabilistically rounded to the nearest integer. When extracting

 Temperament and TextureModule Reference

 221

pitches, a size of zero takes all pitches from the selected Multiset; sizes greater than the number of
available pitches are resolved to the maximum number of pitches. Remaining event parameters are
determined by their respective ParameterObjects.

D.2.5. TextureModule InterpolateFill

This TextureModule interpolates parameters between events generated under a non-linear
monophonic context. All standard and auxiliary parameters, or just time parameters, can be
interpolated. Interpolation method may be linear, power, or half-cosine. Frames are generated
between each event at a rate controlled by a ParameterObject. Frame rates can be updated once per
event or once per frame, as set by the level frame duration texture parameter. Power segment
interpolation may use dynamic exponent values from a ParameterObject; exponent values are
updated once per event. Note: independent of silenceMode, silent events are always created.

D.2.6. TextureModule InterpolateLine

This TextureModule interpolates parameters between events generated under a linear monophonic
context. All standard and auxiliary parameters, or just time parameters, can be interpolated.
Interpolation method may be linear, power, or half-cosine. Frames are generated between each event
at a rate controlled by a ParameterObject. Frame rates can be updated once per event or once per
frame, as set by the level frame duration texture parameter. Power segment interpolation may use
dynamic exponent values from a ParameterObject; exponent values are updated once per event.
Note: independent of silenceMode, silent events are always created.

D.2.7. TextureModule IntervalExpansion

This TextureModule performs each set of a Path as a literal line; pitches are chosen from sets in
order, and are optionally repeated within a single set's duration. Algorithmic ornamentation is added
to a line based on two factors: the selection of an ornament repertory, and the specification of
ornament density. Ornament pitch values, where integers are half steps, are additionally shifted by a
value produced by a generator ParameterObject.

D.2.8. TextureModule LineCluster

This TextureModule performs each set of a Path as a chord cluster, randomly choosing different
voicings.

D.2.9. TextureModule LineGroove

This TextureModule performs each set of a Path as a simple monophonic line; pitches are chosen
from sets in the Path based on the pitch selector control.

 Temperament and TextureModule Reference

 222

D.2.10. TextureModule LiteralHorizontal

This TextureModule performs each set of a Path as a literal horizontal line; pitches are chosen from
sets in fixed order, and are optionally repeated within a single set's proportional duration.

D.2.11. TextureModule LiteralVertical

This TextureModule performs each set of a Path as a literal verticality; pitches are chosen from sets
in fixed order, and are optionally repeated within a single set's proportional duration.

D.2.12. TextureModule MonophonicOrnament

This TextureModule performs each set of a Path as a literal line; pitches are chosen from sets in
order, and are optionally repeated within a single set's duration. Algorithmic ornamentation is added
to a line based on two factors: the selection of an ornament repertory, and the specification of
ornament density.

D.2.13. TextureModule TimeFill

This non-linear TextureModule fills a Texture time range with events; event start times are
determined by mapping values produced by a generator ParameterObject (set to output values
between 0 and 1) to the Texture time range. Remaining event parameters are determined by their
respective ParameterObjects.

D.2.14. TextureModule TimeSegment

This non-linear TextureModule fills a Texture time range with events; event start times are
determined by mapping values produced by a generator ParameterObject (set to output values
between 0 and 1) to segments of the Texture time range, where each segment width is determined
by both a generator ParameterObject for segment weight and a the total segment count. Segment
weights are treated as proportional weightings of the Texture's duration. Remaining event
parameters are determined by their respective ParameterObjects.

 223

Appendix E. OutputFormat and OutputEngine Reference

E.1. OutputFormats

E.1.1. acToolbox

acToolbox: AC Toolbox Environment file. (.act)

E.1.2. audioFile

audioFile: Pulse Code Modulation (PCM) file. (.synth.aif)

E.1.3. csoundBatch

csoundBatch: Platform specific script or batch file. (.bat)

E.1.4. csoundData

csoundData: Csound XML unified file format. (.csd)

E.1.5. csoundOrchestra

csoundOrchestra: Csound orchestra file. (.orc)

E.1.6. csoundScore

csoundScore: Csound score file. (.sco)

E.1.7. maxColl

maxColl: Max coll object data format. (.max.txt)

E.1.8. midiFile

midiFile: Standard MIDI file. (.mid)

E.1.9. textSpace

textSpace: Space delimited event list. (.space.txt)

 OutputFormat and OutputEngine Reference

 224

E.1.10. textTab

textTab: Tab delimited event list. (.tab.txt)

E.1.11. xmlAthenaObject

xmlAthenaObject: athenaCL native XML format. (.xml)

E.2. OutputEngines

E.2.1. EngineAcToolbox

Translates each Texture and each Clone into a Section and writes an Environment file for loading
within Paul Berg's AC Toolbox. A Parallel Section, containing references to each of these Sections,
is also provided. Compatible with all Orchestras; GeneralMidi Orchestra will be used for event
postMap conversions.

E.2.2. EngineAudioFile

Translates events to audio samples, and writes an audio file. Each event's amplitude is scaled
between -1 and 1. Event timing and other event parameter data are stripped. Compatible with all
Orchestras.

E.2.3. EngineCsoundExternal

Translates events to a Csound score for use with an external orchestra. Event parameters instrument
number, start time, and duration are always the first three parameters. Additional event parameters
taken from auxiliary parameters. Compatible with all Orchestras.

E.2.4. EngineCsoundNative

Translates events to a Csound score for use with the native Csound orchestra. All event parameters
are retained. Compatible only with the CsoundNative Orchestra.

E.2.5. EngineCsoundSilence

Translates Texture and Clone events to a Csound score for use with the Csound Silence system by
Michael Goggins. Event parameters follow a standard number and order. Standard panning control
applied to x pan event parameter. Compatible only with the CsoundSilence Orchestra.

 OutputFormat and OutputEngine Reference

 225

E.2.6. EngineMaxColl

Translates events to a Max coll object data format for use inside Max/MSP. All values are converted
to MIDI integer values. Events, for each Texture or Clone, are stored as triples of MIDI pitch,
MIDI velocity, and event time span. All events for Textures or Clones are labeled with numbered
keys, starting from 1. Compatible with all Orchestras; GeneralMidi Orchestra will be used for event
postMap conversions.

E.2.7. EngineMidiFile

Translates events to a standard (type 1) MIDI file. Compatible with all Orchestras; in all cases events
are translated with the GeneralMidi Orchestra.

E.2.8. EngineText

Translate events to a plain text file. All event parameter values are separated by a delimiter (tab or
space) and ended with a return carriage. Compatible with all Orchestras; EventMode Orchestra will
be used for event postMap conversions.

 226

Appendix F. Frequently Asked Questions

General Information
Q: Can users add Csound instruments to athenaCL?

A: Users can create athenaCL-generated eventLists (scores) with any number of parameter values,
allowing the use of external Csound instrument definitions of any complexity.

Q: How can I contribute to this project?

A: If you are a developer and wish to contribute code, add new features, or fix bugs in athenaCL,
contact Christopher Ariza via email.

Q: How much does athenaCL cost?

A: athenaCL is a free and open source software project. There is no cost or licensing fee associated
with this software.

Q: I have found a bug; what do i do?

A: Report it: the athenaCL interpreter features an integrated bug-reporting system. When quitting
athenaCL while an internet connection is available, users may anonymously submit the bug-report.

Q: What does athenaCL do?

A: athenaCL's utility can be divided into two categories. First, athenaCL is a tool for computer-aided
algorithmic composition, producing outputs for Csound, MIDI, and various other formats. Second,
athenaCL it can be used for pitch modeling and analysis. This means that pitch structures, or
ordered successions of pitch sets (called paths), can be created, edited, analyzed, and voiced in a
variety of ways. This has application for musicological analysis, exercises and experiments in music
theory, and pre-compositional sketching and organization of pitch materials.

Q: What is Python?

A: Python is a programming language. Python is a high-level, object-oriented language that is
cross-platform, free, and open source.

Q: What is an interactive command-line program?

A: athenaCL is an interactive command line program, which means that instead of using windows,
buttons, and the mouse to get things done, the user enters commands and sees text displays.
athenaCL is interactive in that, rather than having to give commands with complicated arguments
and flags, users are prompted for each entry needed. Unix programs such as Pine and FTP are also
interactive command-line programs. Users of UNIX-like operating systems will be familiar with this
interface, whereas users of GUI-based operating systems such as Macintosh and Windows may find
this interface challenging at first. The athenaCL system is designed to be as intuitive and user

 Frequently Asked Questions

 227

friendly as possible; knowledge of programming, UNIX, or other command-line programs, although
helpful, is in no way required.

Q: Where can I ask questions about athenaCL?

A: The athenacl-development list is for users and developers of athenaCL, and can be used to ask
questions, get help, or discuss issues related to athenaCL. Users can subscribe and un-subscribe
from this list here: http://lists.sourceforge.net/lists/listinfo/athenacl-development. To prevent
spam, you must join this list to send messages. All questions are welcome. Alternatively, users may
contact Christopher Ariza directly.

Q: Where is the source code?

A: Every distribution download of athenaCL comes with a complete copy of the source code. Since
Python is an interpreted language, the source code can be run "live": there is no executable or binary
of athenaCL, the source-code simply runs in the Python interpreter. Developers can get (with CVS)
the most recent source at SourceForge (www.sourceforge.net/projects/athenacl). An athenaCL.exe
installer is available; this installs athenaCL as a Python package, and is not the athenaCL program
itself.

Q: Who is athenaCL designed for?

A: athenaCL is designed for use by musicians, composers, sound designers, musicologists, music
theorists, and programmers. For dealing with pitch models, basic knowledge of contemporary
pitch-class and set-class notations, as well as post-tonal theory is helpful. Basic familiarity with
stochastics, computer music concepts, and output formats (MIDI, Csound) is also helpful.

Installing, Starting, and Uninstalling athenaCL
Q: How do I uninstall athenaCL?

A: To uninstall an athenaCL distribution, in most cases all that is necessary is to delete the athenaCL
folder. Windows users who have used an athenaCL installer (athenaCL.exe) will be able to remove
athenaCL with the Windows "Add or Remove Programs" Control Panel. On POSIX (UNIX-like)
operating systems such as Linux, BSD, and Mac OSX, athenaCL may write a standard configuration
file in the user's home directory: ~/.athenaclrc; if an error has occurred during an athenaCL session,
a log may be stored in the user's home directory: ~/.athenacl-log; and if the user selected to install
the optional athenaCL launcher tool, a script will be found in /usr/local/bin:
/usr/local/bin/athenacl. All of these can be removed py using the setup.py script with the argument
"uninstall".

Q: Is Csound required to use athenaCL?

A: Csound is only required for rendering audio with athenaCL's built-in library of Csound
instrument; MIDI files, as well as other output formats, can always be produced without Csound.
Csound is a free, cross-platform tool that renders audio based on instrument definitions in a

 Frequently Asked Questions

 228

"orchestra" file and music definitions in a "score" file. As athenaCL provides an integrated library of
Csound instruments, no knowledge of Csound is required to use athenaCL.

Q: Is Python required to use athenaCL?

A: Python is required for athenaCL to run, and is not distributed with athenaCL. Python is free, runs
on every platform, and comes in easy-to-use installers. Many advanced operating systems
(UNIX-based operating systems including GNU/Linux and MacOS X) ship with Python installed.
Visit www.python.org for more information and downloads.

Q: What platforms does athenaCL run on?

A: Because of the cross-platform foundations of the Python programming language, athenaCL runs
on every platform that Python runs on. This includes Mac OS9/OSX, Windows
95/98/NT/2000/ME/XP, Linux, BSD and all UNIX-based systems.

Q: Where is the .exe? how do I start a program without a .exe?

A: There is no .exe file. Rather than having an executable binary, athenaCL runs in the Python
interpreter. Python is a free programming language available at http://www.python.org. After
installing Python, you can launch athenaCL simply by double clicking the file "athenaCL.py"; for
more information see the file "README.txt" in the athenaCL directory.

 229

Appendix G. Number Sequences in Sets and Maps

G.1. The Set Class Library

Number of TnI Set Classes (Number of TnI Vector Registers). Encyclopedia of Integer Sequences
Number: A052307, "Triangle T(n,k)"

Example G-1. Number of TnI Set Classes

n class vector (TnI)
card 2cv 3cv 4cv 5cv 6cv 7cv 8cv 9cv 10cv 11cv 12cv

 1 0
 2 6
 3 6 12
 4 6 12 29
 5 6 12 29 38
 6 6 12 29 38 50
 7 6 12 29 38 50 38
 8 6 12 29 38 50 38 29
 9 6 12 29 38 50 38 29 12
 10 6 12 29 38 50 38 29 12 6
 11 6 12 29 38 50 38 29 12 6 1
 12 6 12 29 38 50 38 29 12 6 1 1

Number of Tn Set Classes (Number of Tn Vector Registers). Encyclopedia of Integer Sequences
Number: A035495, "Musical scales consisting of n notes"

Example G-2. Number of Tn Set Classes

 n class vector (Tn)
card 2xv 3xv 4xv 5xv 6xv 7xv 8xv 9xv 10xv 11xv 12xv

 1 0
 2 6
 3 6 19
 4 6 19 43
 5 6 19 43 66
 6 6 19 43 66 80
 7 6 19 43 66 80 66
 8 6 19 43 66 80 66 43
 9 6 19 43 66 80 66 43 19
 10 6 19 43 66 80 66 43 19 6
 11 6 19 43 66 80 66 43 19 6 1
 12 6 19 43 66 80 66 43 19 6 1 1

Number of Subsets (Sum of Vector Registers). Encyclopedia of Integer Sequences Number:
A007318, "Pascal triangle", (Forte 1973, p. 27)

 Number Sequences in Sets and Maps

 230

Example G-3. Number of Subsets

 subset cardinality
card 2 3 4 5 6 7 8 9 10 11 12

 3 3 1
 4 6 4 1
 5 10 10 5 1
 6 15 20 15 6 1
 7 21 35 35 21 7 1
 8 28 56 70 56 28 8 1
 9 36 84 126 126 84 36 9 1
 10 45 120 210 252 210 120 45 10 1
 11 55 165 330 462 462 330 165 55 11 1
 12 66 220 495 792 924 792 495 220 66 12 1

G.2. The Map Class Library

Number of Map Classes. Encyclopedia of Integer Sequences Number: A019538, "Triangle of
numbers k!*Stirling2(n,k)"

Example G-4. Number of Map Classes

 size
size 1 2 3 4 5 6

 1 1
 2 1 2
 3 1 6 6
 4 1 14 36 24
 5 1 30 150 240 120
 6 1 62 540 1560 1800 720

 231

References

Ariza, C. 2002. "Prokaryotic Groove: Rhythmic Cycles as Real-Value Encoded Genetic Algorithms."
In Proceedings of the International Computer Music Conference. San Francisco: International Computer
Music Association. 561-567.

———. 2003. "Ornament as Data Structure: An Algorithmic Model based on Micro-Rhythms of
Csángó Laments and Funeral Music." In Proceedings of the International Computer Music Conference.
San Francisco: International Computer Music Association. 187-193.

———. 2004. "An Object Oriented Model of the Xenakis Sieve for Algorithmic Pitch, Rhythm, and
Parameter Generation." In Proceedings of the International Computer Music Conference. San Francisco:
International Computer Music Association. 63-70.

———. 2005a. An Open Design for Computer-Aided Algorithmic Music Composition: athenaCL. Ph.D.
Dissertation, New York University.

———. 2005b. "The Xenakis Sieve as Object: A New Model and a Complete Implementation."
Computer Music Journal 29(2): 40-60.

———. 2006. "Beyond the Transition Matrix: A Language-Independent, String-Based Input
Notation for Incomplete, Multiple-Order, Static Markov Transition Values." Internet:
http://www.flexatone.net/docs/btmimosmtv.pdf.

———. 2007a. "Automata Bending: Applications of Dynamic Mutation and Dynamic Rules in
Modular One-Dimensional Cellular Automata." Computer Music Journal 31(1): 29-49.

———. 2007b. "Serial RSS Sound Installation as Open Work: The babelcast." In Proceedings of the
International Computer Music Conference. San Francisco: International Computer Music Association.
1: 275-278.

Castren, M. 1994. RECREL: A Similarity Measure for Set-Classes. Helsinki: Sibelius Academy.

Forte, A. 1973. The Structure of Atonal Music. New Haven: Yale University Press.

Lewin, D. 1987. Generalized Musical Intervals and Transformations. New Haven: Yale University Press.

Morris, R. 1987. Composition with Pitch Classes: A Theory of Compositional Design. New Haven: Yale
University Press.

Rahn, J. 1980. Basic Atonal Theory. NY: MacMillan.

Straus, J. N. 1990. Introduction to Post-Tonal Theory. Englewood Cliffs, NJ: Prentice-Hall.

———. 2003. "Uniformity, Balance, and Smoothness in Atonal Voice Leading." Music Theory
Spectrum 25(2): 305-352.

Xenakis, I. 1990. "Sieves." Perspectives of New Music 28(1): 58-78.

 References

 232

———. 1992. Formalized Music: Thought and Mathematics in Music. Indiana: Indiana University Press.

